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Abstract

Shocks to banks’ ability to raise liquidity at short notice can lead to depositor pan-
ics, as evidenced by recent bank failures. Why don’t banks take a more active role
in managing these risks? In a standard bank-run model, we show that risk man-
agement failures are most prevalent when exposures are more severe and managing
risk would be particularly valuable. Bank capital and deposit insurance coverage act
as substitutes for risk management on the intensive margin but as complements on
its extensive margin, encouraging the adoption of risk management operations. We
provide insights for the appropriate regulation of bank risk-management operations.
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1 Introduction

The recent collapse of a number of financial institutions, and the precarious positions of
others, provides a stark reminder of how issues related to financial instability and panics
are still of paramount concern, despite increases over the last decade on the dollar amount
of deposits subject to deposit insurance coverage and the significant enhancements to the
regulatory framework since the Global Financial Crisis (GFC). For instance, Silicon Valley
Bank (SVB), a large regional lender in California, suffered unexpectedly large withdrawals
in March 2023. This, coupled with reduced liquidation values for assets resulting from
the increases in US interest rates, lead to massive withdrawals, triggering a liquidity
crisis. While there appear to have been many reasons for SVB’s difficulties (Fed Board,
2023), the ensuing “panics” occurred despite little evidence of long term insolvency for
SVB. Similarly, large deposit outflows have been observed at other medium-sized banks
(Caglio et al., 2024; Choi et al., 2024), creating a crisis of confidence at many of these
institutions, with concerns of possible spillovers to the banking sector at large. For many
of these financial institutions, the primary concern appeared to revolve around low values
of assets subject to early liquidation when meeting depositor redemptions, rather than
from accumulating loan losses or other asset impairments, even if these may have been
lurking in the background.

While there is a broad literature on the possibility of depositor panics for financial
institutions and the need to provide liquidity insurance to risk averse depositors, to our
knowledge less attention has been paid on how reduced bank resources in the interim
can trigger a crisis of confidence for depositors (notable exceptions include Allen and
Gale, 2004; Vives, 2014; Liu, 2023, which we discuss in more detail below). Anticipating
this possibility, why don’t banks take a more active role in reducing their exposure to
these risks and the consequent effects for the financial and non-financial sector? In other
words, how do banks’ incentives to manage risk, and in particular uncertainty related to
the liquidation value of bank assets, depend on the degree of exposure to runs that banks
face? Going further, how do capital structure considerations, which are often a tool for
macroprudential policy, or deposit insurance, a common form of government guarantee,
influence a bank’s incentives to manage risk?

To study these issues, we present a two-period global-games model of bank runs, but
where banks face uncertainty about the interim value of their assets if required to liquidate
them early to meet withdrawals. This reflects that the bank, as well as investors, can only
estimate what the interim value of the bank’s assets may be when they first invest, and this
value may be uncertain for a number of reasons, such as changes in interest rates, changes

1



in the competitiveness of the secondary market for assets (such as in e.g., Shleifer and
Vishny, 1986), or simply poor maintenance of assets purchased with the cash provided
by the lender and which serve as loan collateral. In our model, banks collect deposits
from risk-neutral consumers and invest them, along with their own capital, in a long
term project with high, but uncertain, payoffs. The bank’s objective is to maximize its
profits, taking into account the need for consumers to be willing to deposit their funds
with the bank. In order to meet any early withdrawals that take place before the maturity
of investment, the bank must liquidate some fraction of its long-term assets and use the
proceeds to satisfy redemptions. Following the literature using global games to model
banking panics (e.g., Goldstein and Pauzner, 2005), each depositor receives a noisy private
signal about the long-term fundamental value of the bank and uses that information to
decide whether to withdraw early.

We first show, as is standard in similar settings, that there is a unique equilibrium
in which all depositors choose to withdraw early if the signal about the fundamental is
sufficiently bad. In other words, they run on the bank, with some of these runs being pure
panics, driven by a coordination failure among depositors, with depositors withdraw-
ing because other depositors are also withdrawing. The cutoff below which runs occur
depends crucially on the realization of uncertainty—here constituting the shock to the
value of the bank’s assets at the interim date. We show that, consistent with other litera-
ture studying similar issues (see, e.g., Vives 2014; Liu 2023), the realization of a negative
shock to the interim value of bank assets reduces financial stability and leads to a greater
probability of depositor runs.

Given the greater run risk stemming from negative shocks to the interim value of assets,
we ask whether banks have incentives to hedge this risk, and how such incentives depend
on the magnitude of the risk they face. To study these issues, we incorporate a stylized
model of contingent risk management where banks can take an action that increases the
interim value of their assets whenever there is a negative shock to their value. This can
be interpreted as the purchase of a derivative contract that pays in the event of a negative
shock, but more generally can also represent any action that reduces the assets’ exposure to
other factors that may decrease their value, such as bank monitoring of assets or searching
for more liquid resale markets.

While banks may have an incentive to manage much of their risk when the degree of
exposure is relatively small, they find it optimal not to engage in risk management as their
exposure becomes larger. More precisely, risk management failures are most prevalent
when fragility is most extreme, so that managing such risk would be most beneficial.
The intuition stems from recognizing that as the negative shock to the interim value
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of assets becomes large, financial fragility increases. At some point, the bank’s benefit
from surviving, which is inversely proportional to the probability of a run, becomes too
small relative to the costs of establishing risk management capabilities. This cost is likely
associated with the bank’s size, with smaller banks finding it more costly to sustain upfront
investments to engage in risk management. Thus, our result hints to a positive effect of
size on risk management failures, with larger banks choosing to set up risk management
operations even when faced with the possibility of more extreme negative shocks.

Our analysis highlights the importance of bank capital structure as a key determinant
of the incentives to manage risk, as well as whether risk management failures occur.
Likewise, the extent to which bank liabilities are subject to runs, which is determined
by the fraction of deposits covered by government guarantees, plays an important role
in driving a bank’s risk management incentives. We first show that better capitalized
banks, as well as those with a larger fraction of insured deposits, have, at the margin, a
reduced need to manage risk, as well as lower incentives to do so—a reduction on the
intensive margin. So for banks that engage in risk management practices, both capital and
deposit insurance coverage act as substitutes for risk management, whereby both serve to
reduce a bank’s exposure to runs, but the marginal benefit to doing so is lower when the
other component is higher. Second, however, both higher bank capital and having fewer
deposits that are subject to runs act as a catalyst for risk management in the sense that,
all else equal, banks that are better capitalized or that rely on a larger fraction of insured
deposits choose to set up risk management operations in instances where less capitalized
banks, as well as banks with a less stable funding base, would choose not to do so. In
other words, bank capital (as well as deposit insurance coverage) and the establishment
of a risk management desk are complementary.

These results highlight a differential effect of capital on the intensive and extensive
margin of risk management. The substitutability between capital and risk management
suggests that better-capitalized banks do less risk management on the intensive margin.
On the other hand, their complementarity suggests better-capitalized banks face less risk
management failures.

We consider several extensions and robustness checks. First, we endogenize the bank’s
capital structure and show that banks indeed find it optimal to raise capital, so that our
argument that capital matters for risk management incentives is not undercut by a finding
that banks never would want to issue capital anyway. Second, we show that bank risk-
management decisions are inefficient. Due to its lack of commitment (a form of moral
hazard), banks do less risk management than what would be chosen by a social planner
with the power to commit to risk management. Moreover, banks choose to do no risk
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management at all for values of the interim asset for which the planner would find it
optimal to engage in risk-management. Hence, the model exhibits true failures of risk
management. Finally, we show that our result on the occurrence of risk-management
failures is robust to alternative forms of risk management.

Our main contribution is to provide a fully rational framework where, even as their
exposures to risks that can lead to depositor runs and disintermediation increases, banks
may have reduced incentives to manage these risks. This then leads to an increased
probability of bank failure, in a setting where such risk can be managed and where it
would be socially efficient to do so. Banks may not find it optimal to hedge their exposure
to this risk even though the distribution of uncertainty is known by everyone ex ante,
including the depositors who are making withdrawal decisions. To the extent that there
may also exist information asymmetries or behavioral factors that can in practice drive
depositor behavior, we believe that those would magnify the effects we identify, but they
are not necessary to generate an increased incidence of panics. Likewise, institutions’
reduced incentives to manage risk emerge precisely as such risk increases arises as a
natural consequence of the maximization problem banks face.

Literature. Our paper contributes to the long-standing literature on the determinants
of bank fragility and policies to mitigate it. Panic-driven depositor runs, whereby crises
are a self-fulfilling phenomenon hinging on strategic complementarities in depositors’
withdrawal decisions, have received considerable attention following the seminal work
by Diamond and Dybvig (1983). The application of global games methods (Carlsson
and van Damme, 1993; Morris and Shin, 2003; Vives, 2005) establishes a link between
depositors’ withdrawal incentives and a bank’s fundamentals (Rochet and Vives, 2004;
Goldstein and Pauzner, 2005). This approach allows to endogenize the probability of a
bank run and to study its dependence on bank characteristics and government policies.
Examples include work on the implications for fragility of information disclosure (Bouvard
et al., 2015), debt maturity structure (Eisenbach, 2017), the level of collateralization (Ahnert
et al., 2019), government guarantees (Allen et al., 2018; Carletti et al., 2023a), bank capital
structure and portfolio liquidity (Kashyap et al., 2023), and interventions in panic-based
bank runs (Shen and Zou, 2024). Our paper also uses similar methods to analyze how risk
management affects the probability of a bank run.

In our framework, the rationale for risk management arises from increased bank fragility
upon a negative shock to the interim value of assets. A negative association between
interim asset values and bank fragility has been previously established by Vives (2014)
and Liu (2023), among others. Our paper takes this relationship as a starting point and
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analyzes the extent to which risk management can offset the detrimental impact of a
lower interim asset value on fragility. More importantly, we also study how the severity
of the shock, and the associated fragility, affects banks’ incentives to manage risk in the
first place, an aspect that to our knowledge has not previously been studied but which is
important for the debate on the stability of the banking sector.

Our main result is that banks fail to engage in risk management when the shock to
the interim asset value is severe and runs are likely. By focusing on the incentives to
hedge against liquidity risk, our analysis complements the literature on failures in risk
management, whose focus is, instead, on credit risk. Similarly to our paper, Bouvard
and Lee (2020) develop a framework in which risk management failures emerge from a
coordination problem among financial firms. However, they focus on the information
acquisition process, with firms acquiring too little information related to the assessment
of risks, while we analyze the decision to exert effort to mitigate the risks that have been
identified. A similar focus is also present in (Rampini and Viswanathan, 2010, 2013). In the
first paper, they show that risk management incentives depend on institutions’ financial
constraints in that those that are more financially constrained tend to hedge less and do not
engage in any risk management. While the implication that smaller firms, which tend to
be more financially constrained, are more exposed to risk management failures resembles
our result on bank size, the key friction behind the result is very different. In our paper,
depositors’ coordination failure, rather than limited pledgeability, plays a crucial role and
allows us to study specific policies that provide both contingent as well as non-contingent
management of risk. Extending the analysis to a dynamic framework, Rampini and
Viswanathan (2013) show that risk management failures occur when financial firms are
hit by a series of adverse shocks. In this respect, despite the differences in the modelling
approach, our paper shares with theirs the implication that banks fail to engage in risk
management when it would be most needed.

The analysis in our paper is also related to the recent contributions analyzing the U.S.
regional banking crisis of 2023. This turmoil in the US banking sector had a strong flavor
of panic-induced runs, occurring with unprecedented speed in a digitized world and
amplified by social media (Cookson et al., 2023). In view of the root causes, Jiang et
al. (2023) document a substantial drop in asset values for SVB following the tightening
in monetary policy. This, combined with its extreme reliance on uninsured deposits,
emerges as the driver behind the solvency-driven run in their theoretical framework. In
the model developed in Drechsler et al. (2023), runs stem from a pure coordination failure
associated with a valuable deposit franchise (Drechsler et al., 2017). The deposit franchise
contributes to bank value only if deposits are retained. Since the value of a bank’s deposit
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franchise is very high in a high rate environment, deposit withdrawals have a large impact
on bank value, making it optimal to withdraw if a depositor believes that others would
do the same. Relative to these papers, we focus on the destabilizing effect of a reduced
value of bank assets at the time of depositors’ withdrawals and the reasons why banks
fail to set up effective risk management strategies despite the fact that potential drops in
interim asset values are anticipated. In this respect, our paper shares the view presented
in Dursun-de Neef et al. (2023) that the SVB failure was driven by the losses incurred by
the bank from the sale of their long-term assets.

Our result on the relationship between the use of contingent risk management tools
and bank capital, which dampens the strategic complementarity in depositors’ withdrawal
decisions and so limits the occurrence of runs, speaks to the emerging discussion on the
implications of the regional banking crisis for banking regulation (Acharya et al., 2023).
In this respect, since bank incentives to put in place risk management operations increase
with bank capital, our analysis highlights a novel complementarity between bank capital
and contingent risk management tools that underscores the value of bank capital beyond
its well-known stabilizing role.

Structure. The paper is organized as follows. Section 2 describes the model. Section 3
characterizes depositors’ withdrawal decisions. Section 4 analyzes the incentives for risk
management and its dependence on bank capital. Section 5 analyzes the role of deposit
insurance in affecting bank risk management decisions. Section 6 discusses robustness and
extensions, where we endogenize the deposit rate and bank capital, analyse an efficiency
benchmark, and consider an alternative approach to modelling risk management. Finally,
Section 7 concludes. All proofs are in the Appendix.

2 Model

The model builds on Goldstein and Pauzner (2005) and Carletti et al. (2023b). The economy
extends over three dates t = 0,1,2 and is populated by a monopolistic bank and a unit
continuum of consumers indexed by i ∈ [0,1]. All agents are risk neutral and do not
discount the future. Consumers are indifferent between consuming at either date. There
is a single divisible good for consumption and investment. At t = 0, the bank is endowed
with k ∈ (0,1) units (bank capital) and consumers are endowed with 1− k units each.

The bank has access to a profitable but risky long-term investment technology, such as
corporate loans, that requires an investment of one unit at t = 0. It returns ℓ ∈ (0,1) if
liquidated prematurely at t = 1 and Rθ upon maturity at t = 2, where θ ∼U [0,1] represents
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the fundamentals of the economy and R is a constant that reflects the return from financial
intermediation, which is assumed to be high enough to ensure bank viability.1

To capture a role for risk management as a way to hedge against the realization of
negative shocks, we assume that there is aggregate uncertainty about the interim value of
the bank’s assets (as in e.g., Allen and Gale, 2004, 2007; Eisenbach, 2017). This uncertainty
is realized and observed at the beginning of t = 1:

ℓ=

ℓH w.p. 1− pℓ

ℓL w.p. pℓ,
(1)

for all θ ≤ θ , where 0 < ℓL < ℓH ≤ 1.2 Following Goldstein and Pauzner (2005), we assume
that there exists a value θ ∈ (0,1) such that, for θ ≥ θ , the bank always has sufficient
resources to settle all date-1 claims. Specifically, we assume that ℓ= 1 for θ > θ , so that the
asset’s value is not impaired under liquidation. In what follows, we assume that θ → 1.3

At t = 0, the bank can hedge against the shock of a low interim asset value (ℓ= ℓL) by
exerting risk management effort z. Hedging allows the bank to increase the interim asset
value by an amount z > 0 to ℓL + z upon the negative shock. Risk management is costly
and entails a non-pecuniary cost c z2

2 +F . We discuss in detail the interpretation for the
risk management variable z and its cost in Section 4, as well as an alternative modelling
approach to risk management in Section 6.4.

To finance investment, the bank collects external funds from consumers at t = 0 in
exchange for a deposit contract that is demandable at par at t = 1.4 At the beginning of
t = 0, the bank chooses the repayment at t = 2, r2, to maximize its expected profits subject
to consumer participation. The opportunity cost of consumers is ρD ≥ 1. Since debt is
demandable, depositors can withdraw their funds at t = 1, before the bank’s investment
matures. At the beginning of t = 1, each depositor receives a noisy private signal about

1A necessary condition for this is R > 2.
2Allowing for a strictly positive probability that there is no shock to the interim asset value guarantees

that intermediation is always feasible, even when the interim asset value in state L is very low. Moreover, the
existence of two aggregate states also allows us to consider risk management tools that transfer resources
from the good state (H) to the bad state (L), as we show in Section 6.4.

3This assumption is without loss of generality: θ can be arbitrarily close to 1 without affecting any results.
4Bank debt is assumed to be demandable, which arises endogenously with liquidity needs (Diamond and

Dybvig, 1983), as a commitment device to overcome agency conflicts (Calomiris and Kahn, 1991; Diamond
and Rajan, 2001; Ahnert and Perotti, 2021), or as a way to maximize profits (Carletti et al., 2023a) by well-
capitalized banks. Accordingly, uninsured deposits refer to any short-term or demandable debt instrument,
including uninsured retail deposits and insured deposits when deposit insurance is not credible (Bonfim
and Santos, 2020). In the U.S., three quarters of commercial bank funding are deposits, half of which are
uninsured (Egan et al., 2017).
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the fundamental:
si = θ + εi, (2)

with εi ∼U [− ϵ,+ ϵ]. These signals are identically distributed and conditionally indepen-
dent. A depositor’s signal provides information about both the bank’s profitability and
the signals received by other depositors (and hence their withdrawal choices). Following
much of the global-games literature, we assume vanishing noise to simplify the analysis,
ϵ→ 0.5

The bank satisfies early withdrawals n by liquidating the long-term investment. If
withdrawal demand exceeds the liquidation value of the bank’s assets, each depositor
receives an equal share of the proceeds at t = 1. If the remaining proceeds from the project
are not enough to satisfy depositors upon maturity at t = 2, the bank is bankrupt. In this
case, the bank makes zero profits and depositors receive nothing due to the presence of
bankruptcy costs.6

Table 1 summarizes the timing of the model. The model is solved backwards. We start
with the analysis of the withdrawal game at t = 1 in Section 3. Then, we move on to the
characterization of the bank’s risk management choices in Section 4. In both sections, we
take the deposit contract and bank capital structure as given, but we will endogenize these
in later sections.

Date 0 Date 1 Date 2

1. Bank invests funds 3. The liquidation value ℓ is observed 6. Investment matures
in a risky investment

4. The fundamental θ is realized but
unobserved; depositors receive a noisy 7. Residual depositors

2. Bank chooses its risk private signal si and may withdraw are paid
management effort

5. Bank liquidates to meet withdrawals 8. Consumption

Table 1: Timeline of events.

5Vanishing private noise simplifies the analysis of the bank’s ex-ante choices of the deposit contract and
its risk management effort. Vives (2014) studies the properties of equilibria in a similar setup when this
assumption is relaxed.

6For simplicity, we assume full bankruptcy costs. This is consistent with evidence that bankruptcy costs
are large. E.g., James (1991) measures the losses associated with bank failure as the difference between the
book value of assets and the recovery value less direct costs associated with failure. These losses amount to
about 30% of failed banks’ assets.
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3 Depositors’ withdrawal decisions and the probability of
a run

In this section, we characterize depositors’ interim withdrawal decisions for a given deposit
contract {1,r2} and risk management choice z. We use ℓ to denote the interim asset value,
which is either ℓH or ℓL + z, depending on whether the negative shock has been realized
and the extent of the bank’s risk management effort. We assume that z < ℓH − ℓL, so that
the bank’s risk management does not fully compensate for the lower amount of interim
resources available upon the negative shock.7

Depositors simultaneously decide whether to withdraw from the bank or to keep their
funds deposited upon observing their private signal. As is standard in a global-games
framework, when the fundamental of the economy is low, withdrawing early is a dominant
action for depositors, even when all depositors do not withdraw. This is the case when
θ < θ , which solves:

Rθ − (1− k)r2 = 0. (3)

In this range, which we refer to as the lower dominance region, the bank is insolvent at date
2 even if no depositor has withdrawn early. As a result, each depositor expects to receive
nothing at date 2 (due to costly bankruptcy) and so finds it optimal to withdraw early
irrespective of what other depositors do. At the other extreme, when θ > θ , waiting until
date 2 is a dominant action. For such high values of the fundamental, the liquidation value
fully covers the promised payment to all withdrawing depositors, so early withdrawals
does not impose any loss on depositors who choose to wait until t = 2 to withdraw.
Accordingly, these depositors prefer the payment of r2 over the lower payment of r1 = 1
at t = 1. Similarly, we refer to this range as the upper dominance region.

For the intermediate range (θ ,θ ), the withdrawal decision of a depositor depends on
the withdrawal decisions of other depositors. The following proposition describes these
withdrawal decisions and characterizes the bank failure threshold.

Proposition 1. All depositors withdraw their funds at t = 1 and the bank fails if the fundamental
θ falls below a threshold θ ∗, which depends on the interim asset value ℓ and bank capital k:

(i) For ℓ ≥ 1− k, there are only fundamental runs and the threshold is the lower dominance
bound:

θ
∗ = θ ≡ (1− k)r2

R
. (4)

7As shown in Section 4, z∗ < ℓH − ℓL is (privately) optimal when the variable cost parameter c is not too
small.
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(ii) For 1− k > ℓ, there are also panic runs and the threshold is:

θ
∗ =

(1− k)r2

(
1− α

r2

)
R
(

1− 1−k
ℓ

α

r2

) = θ
r2 −α

r2 − α(1−k)
ℓ

> θ , (5)

where α =
∫ n

0 dn+
∫ 1

n
ℓ

(1−k)ndn is a depositor’s expected payoff from withdrawing early and
n = ℓ/(1−k) is the maximal level of withdrawals that the bank can serve in full at the interim
date.

Proof: See Appendix A.1.□
Proposition 1 establishes the existence of a unique equilibrium of the withdrawal sub-

game, where depositors use threshold strategies and optimally decide to withdraw upon
unfavorable private signals, si < s∗. For vanishing private noise, this signal threshold
converges to the threshold of the economic fundamental, s∗ → θ ∗. This implies that,
in equilibrium, all depositors behave alike: they withdraw for θ < θ ∗ and there are no
withdrawals for θ ≥ θ ∗.

Depending on the interim asset value ℓ and bank capital k, pure panic runs arising
from coordination failure may or may not be possible (see also Vives, 2014; Carletti et
al., 2023b). When the interim value of the bank’s asset ℓ is high enough to entirely cover
repayment to all depositors, 1− k, then there is no strategic complementarity among
depositors’ withdrawal decisions and runs only occur when the return of the bank’s long-
term investment is low. In other words, runs can only happen when the bank would be
unable to meet its repayment obligations at the final date even if no depositors withdraw
at the interim date, t = 1. This is the case when θ < θ . On the other hand, if the interim
value ℓ is not enough to fully cover depositors’ repayments at t = 1, i.e., if ℓ < 1− k, then
panic runs are also possible since the bank’s ability to fully repay depositors at the interim
date depends on how many depositors are withdrawing. Thus, depositors fear that other
depositors withdraw their funds and that the bank will not have enough to repay them as
promised at the final date. In this case, θ ∗ > θ and panic runs occur when θ ∈ (θ ,θ ∗).

Next, we examine the determinants of the failure threshold at t = 1, for given risk
management choice of the bank z and deposit rate r2. Besides determining the nature
of runs, i.e., whether they are fundamental-driven or also due to depositors’ panic, the
interim asset value ℓ and bank capital k also affect the probability of each type of run, as
we show below.

Proposition 2. The comparative statics with respect to bank capital and the interim asset value
are:
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(i) For ℓ ≥ 1− k, the fundamental run threshold decreases in bank capital, ∂θ /∂k < 0, while
the interim asset value has no effect on the failure threshold: ∂θ /∂ℓ= 0.

(ii) For 1− k > ℓ, the run threshold decreases in bank capital and the interim asset value at
a diminishing rate, ∂θ ∗/∂k < 0, ∂ 2θ ∗/∂k2 > 0, and ∂θ ∗/∂ℓ < 0, ∂ 2θ ∗/∂ℓ2 > 0. The
effects of bank capital and the interim asset value on depositors’ run risk are substitutes,
∂ 2θ ∗/∂ℓ∂k > 0, so that the beneficial effect of a larger interim value for the bank’s assets
is lower when the bank has more capital. The range of fundamental realizations with
panic runs decreases in bank capital and the interim asset value, ∂ (θ ∗− θ )/∂ℓ < 0 and
∂ (θ ∗−θ )/∂k < 0.

Proof: See Appendix A.1. □
The failure threshold θ ∗ represents the ex-ante probability of a bank run, which is

our measure of financial stability. Based on the results in Proposition 2, we have that
θ ∗

L ≡ θ ∗(ℓL + z,k) > θ ∗
H ≡ θ ∗(ℓH ,k) given ℓL + z < ℓH < 1. This implies that, for values of

the economy’s fundamental θ such that θ ∈ (θ ∗
H ,θ ∗

L ), a run on the bank occurs when the
interim asset value is low that would not have taken place otherwise. Furthermore, only
the cutoff for panic runs θ ∗ depends on the realization of the interim asset value, so a
negative shock to it not only increases the overall likelihood of a bank failure, but also the
range in which runs are driven by the coordination failure among depositors.8

The lower interim value of the bank’s assets exacerbates the coordination failure among
depositors and induces them to want to withdraw their deposits for fear of others with-
drawing as well, even though coordinating not to panic would be Pareto improving,
benefiting both depositors and the bank. This problem becomes more severe the lower is
ℓ, which is reflected in the increased sensitivity of the threshold. This effect makes risk
management particularly valuable socially when the negative shock to the interim asset
value is large. Importantly, the destabilizing effect of the negative shock to the interim
asset value arises even though, by construction, there is no change in the long-term value
of the project, Rθ , but rather only in the bank’s resources at t = 1. Our focus therefore
is purely on risk stemming from reduced interim values of assets, which in the absence
of the possibility of depositor runs would have no implications for bank stability, but
which exposes banks to possibly severe instability when depositors can decide whether

8These findings are consistent with and analogous to the result in Vives (2014), who considers comparative
statics to the interim value of the bank’s assets and shows that lower interim values lead to a greater risk
of panics. Although the setting is slightly different, and does not consider the withdrawal incentives of
depositors directly, the mechanism here is similar: the reduced interim asset value worsens the coordination
failure among depositors (or fund managers in Rochet and Vives, 2004; Vives, 2014).
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to withdraw early.9
In light of the increased fragility due to a negative shock to the interim asset value,

we examine the implications for the bank’s risk management choices when it rationally
anticipates the possibility of such an event. Our main interest is in contingent risk man-
agement tools that are best suited to deal with severe negative shocks that occur with a
potentially low, but positive probability.

4 Risk management

The probability of a run increases after a negative shock to the interim value of bank
assets. Such a shock could arise, for example, because part of the bank’s portfolio may
represent fixed-income assets whose value at the interim date may decline substantially if
interest rates rise, perhaps due to a rapid tightening of monetary policy. Alternatively, the
shock may represent mismanagement of assets that further reduces their value in outside
use, thus leading to depressed values at the interim date in the event they need to be sold
to satisfy depositors’ claims. It may also stem from sudden and unexpected drying up
of secondary markets (“market freezes”), which cause the bank to suffer fire-sale losses
when having to raise liquidity quickly. The effect of such a negative shock to the interim
asset value can be quite large and result in highly fragile banks, which here is represented
by having θ ∗(ℓL,k) approach θ , the bound for the upper dominance region.

Based on these considerations, we study the bank’s incentives to hedge against such
a negative shock to the interim value of its assets. Hedging against the shock results in
the bank exerting effort z, so that the interim asset value after the negative shock becomes
ℓL + z. This formulation implies that ℓL and z are substitutes and that the effect of z on the
failure threshold θ ∗ is the same as the effect of ℓ characterized in Proposition 2. By design,
our notion here of risk management is narrow and is targeted to offset the exact risk faced
by the bank, which is that it may be forced to liquidate assets whose value has dropped
in the event of a run by depositors. We relax this assumption in Section 6.4 and study
a setting in which risk management leads to a payout in the event of a negative shock,
rather than only in the event of actual liquidation.

The amount z is chosen by the bank at t = 0, after the deposits are raised, and comes at
non-pecuniary cost c z2

2 +F , borne by the bank. The variable part of the cost of hedging,

9Of course, shocks to the interim value of the bank’s assets, ℓ, which represents a deterioration of the
projects value, may also affect its long-term return, Rθ . This raises additional questions about the possibility
of credit risk management in addition to the management of liquidity studied here. See the conclusion for
a discussion of these aspects.
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c z2

2 , may represent the search effort the bank must exert in finding an appropriate hedging
instrument or partner, collateral that the seller might need to pledge against the derivative
position, or counterparty risk. It may also reflect the cost of diligently monitoring the
bank’s assets or of identifying resale partners and opportunities, thus increasing the
liquidity of the secondary market. The fixed part F , instead, can be interpreted as the cost
of establishing a risk management desk, identifying the risk to be hedged, understanding
the bank’s exposure, etc. The assumption of a quadratic cost for hedging is clearly stylized,
and is designed specifically to make at least some amount of risk management as easy as
possible for the bank because the marginal cost of a minimal amount of effort z is zero.10
In what follows, we assume that ℓL + z∗ ≤ ℓH in any equilibrium, which effectively places
a lower bound on the marginal cost of hedging, c. We also focus on the case where panic
runs may arise, that is ℓH < 1− k, so the relevant failure thresholds are given by Equation
(5) when evaluated at ℓ= ℓL+ z and ℓ= ℓH , respectively. In other words, we focus on cases
where financial instability can clearly be inefficient, so that there is value to reducing the
probability of a run.

As we will show in detail below, the choice of z depends crucially on the level of the
interim asset value in the event of a shock ℓL. Since our primary focus is on identifying
how the interim asset value affects depositor behavior and, in turn, bank incentives, in
the analysis that follows in this section we hold all other variables fixed when we consider
changes in ℓL. Doing so isolates the effect coming directly from changes in the interim
asset value, leaving aside additional indirect effects stemming from the need to continue
to satisfy depositors’ participation constraint. It also has the additional benefit of allowing
for a more tractable analysis, making the economics at work more transparent. Of course,
changes in the distribution of the interim asset value, ℓ, also affect depositors’ expected
return, which may then require that the bank adjust r2 in order to induce depositors to
put their money in the bank. As we show in Section 6.1, our main result about risk
management failures goes through also when r2 is endogenized.

4.1 Risk management choice

The bank chooses whether and how much effort to exert with the objective of maximizing
its expected profits. Since a run on the bank wipes out all resources, leaving nothing to

10Clearly, the costs of risk management in practice may differ from what we assume here and, in par-
ticular, even if convex these costs may not be quadratic. From this perspective, our framework is tilted
against the possibility of extreme failures of risk management. As a result, we believe that our findings
on risk management failures should be robust to the introduction of additional frictions and real-world
considerations.
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the bank (which occurs for θ < θ ∗
L and θ < θ ∗

H), the bank only makes positive profits if
no run occurs. In this case, the bank’s investment project returns Rθ and the bank keeps
the remainder, Rθ − (1− k)r2, after repaying depositors. Integrating over the possible
realizations of the economic fundamentals, bank profits are:

Π(z) ≡ pℓ
∫ 1

θ∗
L

[Rθ − (1− k)r2]dθ +(1− pℓ)
∫ 1

θ∗
H

[Rθ − (1− k)r2]dθ − c
z2

2
−F1{z>0}. (6)

Differentiating (6) with respect to z gives us the first-order condition as follows:

dΠ
dz

= pℓ[Rθ
∗
L − (1− k)r2]

(
−dθ ∗

L
dz

)
− cz = 0, (7)

where dθ ∗
L /dz = dθ ∗

L /dℓ because of the substitutability of ℓL and z and the latter derivative
is given in Proposition 2. The first term in Equation (7) is the marginal benefit of risk
management: higher z reduces the failure threshold θ ∗

L in the bad aggregate state, which
benefits the bank through the increase in residual profits around the failure threshold,
Rθ ∗

L − (1− k)r2 > 0. The second term in (7) is the marginal cost of risk management.
Denote as ẑ the solution to Equation (7). The analysis above shows that, ignoring the

fixed cost of setting up risk management operations, the bank always has an incentive
to select a strictly positive risk management effort, ẑ > 0. This follows directly from our
specification designed to make risk management as easy as possible: the marginal cost
of zero risk management is zero, while the marginal benefit is strictly positive. However,
such incentives may be different depending on the the severity of the shock, as measured
by ℓL. We have the following result.

Proposition 3. The incentives to manage risk increase as the interim asset value in the event of
a shock decreases: dẑ/dℓL < 0. Additionally, risk management incentives decrease as bank capital
and the variable cost parameter c increase, while they increase as the probability of the negative
shock increases: dẑ/dk < 0, dẑ/dc < 0, and dẑ/d pℓ > 0.

Proof: See Appendix A.2. □
A lower interim value of bank assets, as well as a lower level of capital and a more

likely shock to the interim asset value all increase the banker’s incentives to exert risk
management effort. These effects are driven by the increased sensitivity of the probability
of runs, which increases the marginal benefit from doing risk management and, in turn,
the bank’s incentives to exert effort.

Of course, whether the bank actually does any risk management depends on whether
it is sufficiently profitable to do so. Whether bank profits are positive depends on the
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cost F of setting up risk management operations relative to the size of the shock, since the
bank’s expected profits will be small when the shock is large. In what follows, we show
that, in line with the recent events in the US, the presence of these fixed costs—even if
very small—may prevent the bank from engaging in any risk management. In particular,
this occurs when the shock to the interim asset value is severe, so that the social value of
mitigating the bank’s exposure to risk would be particularly large.11

Before presenting our main result related to the bank’s risk management choices, it is
useful to first establish some notation that will be used in deriving the result. Denote by
ℓ̂ (F) the interim asset value ℓL such that bank profits in the event of a negative shock (i.e.,
if ℓ= ℓL) are equal to the cost of setting up risk management operations. In other words,
ℓ̂ (F) solves:

pℓ
∫ 1

θ∗
L (ℓ̂(F))

[Rθ − (1− k)r2]dθ ≡ F . (8)

Note that, in defining ℓ̂ (F), we are assuming the bank does no risk management, so that
z = 0. Define by ĉ the value of the variable cost c such that, when c = ĉ, the level of risk
management chosen by the bank in the limiting case of ℓ→ 0 is equal to ℓ̂(0). We establish
the existence of such a ĉ in Appendix A.3. This assumption on c is primarily to guarantee
that the bank cannot always fully offset negative shocks to the interim value of its assets,
as previously discussed.

Proposition 4. Let c> ĉ. Then, for any F > 0, there exists an interim asset value ℓ̃L(F)∈ (0, ℓ̂ (0))
such that zero risk management is optimal, z∗ = 0, when ℓL < ℓ̃L (F).

Proof: See Appendix A.3. □
The proposition shows that, for sufficiently large shocks, the bank prefers not to set up

any risk management operations at all. Instead, the bank allows depositors to withdraw
all their funds from the bank, leading to bank failures with near certainty upon a negative
shock. This occurs even though the marginal value of hedging increases as ℓL decreases:
∂θ ∗

L /∂ z increases as ℓL decreases. From the perspective of the bank, however, it only
captures this value in the event a run does not occur, which becomes less likely as the
interim liquidation value of assets decreases, even if the bank hedges optimally. Hence,
for ℓL sufficiently low, the bank no longer finds it optimal to engage in risk management.
Moreover, this is true even if the fixed cost F of setting up risk management operations is
arbitrarily small, in the sense that for any cost F , there is always a value of the negative
shock sufficiently large that ex ante the bank would prefer not to invest any resources in

11In Section 6.3 we show that the bank indeed does too little risk management relative to what would be
socially optimal. Hence, the cessation of all hedging activities represents a failure in risk management.
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creating a risk management desk.

Risk management choice
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Figure 1: The left panel shows the risk management intensity z∗ as a function of ℓL (red solid
line) and the right panel shows the equilibrium run threshold θ ∗

L as a function of ℓL for the case
when z = 0 (gray dashed line) and for the case when z∗ = ẑ > 0 (blue solid line). This numerical
illustration uses the parameters: R = 3, pℓ = k = 1/20, c = 100, F = 1/100, and r2 = 6/5.

The left panel of Figure 1 shows the optimal level of risk management effort z∗ as a
function of the interim asset value. For low interim asset values, ℓL < ℓ̃L(F), the bank
chooses not to set up a risk management desk and consequently z∗ = 0 (Proposition
4). Conversely, the bank sets up a risk management desk when the negative shock to
the interim asset is less severe, ℓL > ℓ̃L(F). In this case, the marginal risk management
incentive implies an optimal risk management effort z∗ = ẑ. The decrease in the marginal
risk management incentive for higher levels of the interim asset value implies a negative
relationship between ẑ and the interim asset value (Proposition 3). The right panel of
Figure 1 shows the bank failure threshold as a function of the interim asset value, taking
into account the optimal risk management choice. For ℓL > ℓ̃L(F), the bank chooses to
set up a risk management desk and the bank failure threshold is lowered from the gray
dashed line to the blue solid line due to the the stabilizing effect of the risk management
activity.

Through the cutoff ℓ̃L(F), Proposition 4 establishes that the realization of the shock to
the interim asset value ℓL and the magnitude of the fixed cost F jointly matter for the bank’s
decision to engage in risk management. In other words, banks with different fixed cost
F have a different tolerance to shocks and, in turn, ability to engage in risk management.
Corollary 1 establishes an equivalent interpretation by considering that for any given shock
ℓL, there must be a fixed cost F associated with setting up risk management operations
such that banks with higher cost prefer not to do so. Denote such a cutoff value as F̂ and
note that it is strictly positive for any ℓL > ℓ̃L(0). We then have the following result for all
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cases where F̂ > 0.

Corollary 1. The cutoff F̂ increases in ℓL: ∂ F̂/∂ℓL > 0.

Proof: See Appendix A.4. □
This corollary emphasizes the relationship between the magnitude of the fixed cost

F and the realized interim asset value ℓL. With a higher interim asset value, the bank
can achieve a positive profit from risk management upon a negative shock even for a
higher fixed cost of setting up risk management operations. Conversely, with a lower
fixed cost, the bank can achieve a positive profit upon a negative shock even for lower
interim asset values. This result suggests a link between bank size and their choice to
set up risk management operations. To the extent that for larger banks the fixed cost F

represents a smaller fraction of their total assets and revenue, we expect that larger banks
find it optimal to set up risk management operations even when faced with the possibility
of more extreme negative shocks to the interim value of their assets. By contrast, smaller
bank engage in no risk management even for smaller possible shocks, recognizing that
the benefit of managing this risk is insufficient to cover the costs in setting up such
operations.12

4.2 Bank capital and risk management

In Section 4.1 we showed that a higher level of bank capital (e.g., due to higher regulatory
bank capital requirements) is associated with a reduction in risk management effort if the
solution to the risk management problem is interior (Proposition 3). However, k and z are
not always substitutes. We show in this section that, all else equal, higher bank capital can
be a catalyst for using contingent risk management, whereby it can facilitate the choice
of a positive z∗. In other words, bank capital is complementary to the establishment of a
risk management desk, even if it mutes the bank’s marginal incentives to exert effort. To
establish this complementarity, we analyze how F̂ is affected by bank capital.

Proposition 5. The fixed cost threshold F̂ below which some risk management is optimal increases
in bank capital, dF̂/dk > 0.

Proof: See Appendix A.5. □

12It is straightforward to see that if all bank operations are scaled by a variable S, then the cutoff value of
the fixed cost F above which banks do not engage in any risk management becomes F̂/S. Hence, for larger
S, a given bank is more likely to have risk management operations in place, whereas smaller banks avoid
such costs and instead risk collapse in the event of a sufficiently large negative shock.
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The proposition establishes that the fixed cost threshold below which the bank finds it
optimal to set up risk management operations and, hence, z∗ > 0, increases in the bank’s
capital. This means that as bank capital increases, a larger set of banks should find it
optimal to hedge their exposures. Therefore, a positive and complementary relationship
between bank capital and setting up a risk management desk arises, which can be viewed
as the effect of capital on the extensive margin of risk management, rather than the
intensive margin, which would relate to the exact level of risk management whenever
z∗ > 0. Intuitively, more bank capital increases bank profits when it survives until the
final date since it reduces the probability of runs as well as the repayment obligation to
depositors, (1− k)r2. This makes the bank more willing to bear the cost of setting up risk
management operations, since it has more to gain by doing so.

Bank capital and risk management
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Figure 2: The left panel again shows z∗ as a function of ℓL, but now for a higher level of bank capital
k′ = 0.055 (red solid line) and for the lower level of bank capital k = 0.05 that was previously shown
in Figure 1 (red dotted line). The right panel shows depositors’ run thresholds in equilibrium for
both levels of bank capital, θ ∗

L (k,z) and θ ∗
L (k

′,z), as a function of ℓL. The gray and blue dashed
(solid) lines depict the run thresholds for the case when z = 0 (z∗ = ẑ > 0) for the lower and higher
level of bank capital, respectively. All other parameters are the same as in Figure 1.

The left panel of Figure 2 shows the optimal level of risk management effort z∗ and the
right panel shows the bank failure threshold as a function of the interim asset value for
two different levels of bank capital. We use the baseline level of bank capital k = 0.05 from
Figure 1 and add a 10% higher level of bank capital k′ = 0.055. The higher level of bank
capital is associated with a lower risk management effort, i.e., ẑ(k′) < ẑ(k), conditional on
setting up a risk management desk. That is, a bank with a more capital does less risk
management at the intensive margin, implying that bank capital and risk management
effort are substitutes, as shown in Proposition 3 and in the left panel of Figure 2. This result
is due to the stabilizing role of bank capital, which is reflected in a lower run threshold for
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a higher levels of bank capital, i.e., θ ∗
L (k

′,z = 0) < θ ∗
L (k,z = 0), as shown in Proposition 2

and represented by the dotted gray and blue lines. Also, θ ∗
L (k

′,z∗)< θ ∗
L (k,z∗), as as shown

by comparing the blue and gray solid lines.
However, the complementary relationship between bank capital and the establishment

of a risk management desk can also be seen in Figure 2, and is illustrated by the interval
(ℓ̃L(k′,F), ℓ̃L(k,F)) of interim asset values where a higher level of bank capital is a catalyst
for the establishment of a risk management desk. The figure thus illustrates how a bank
with a higher amount of capital will engage in risk management activities even at lower
levels of interim asset value, or equivalently, at higher levels of fixed costs, compared to a
bank with less capital.

To show that banks indeed may want to raise capital as a source of financing even if,
arguably, it represents a more expensive form of financing, we endogenize bank capital in
Section 6.2. There we show that banks have incentives to use equity capital in equilibrium.

5 Deposit insurance

In the previous sections, we have assumed that all deposits are uninsured, as is common in
the literature on financial fragility. In practice, however, many deposits are often insured,
and this insurance is likely to affect depositor behavior and thus, by extension, how banks
respond. In this section, we extend the analysis to consider the role that deposit insurance
(DI) plays for the bank’s risk management choice. To do so, we assume that a fraction
σ ∈ [0,1] of depositors is insured. Insured depositors are certain to receive the promised
repayment and thus have no incentive to withdraw early, regardless of the signal si.13

We obtain two main insights. First, we show that DI has a stabilizing effect on bank
fragility. Second, we link this beneficial stabilizing effect of DI to the bank’s risk man-
agement choice and find that it reduces the bank’s marginal incentives to manage risk,
much like the other non-contingent tool we studied earlier, namely capital. At the same
time, however, DI acts as a catalyst for establishing a risk management desk. In other
words, even though the degree of risk management decreases conditional on the bank
being interested in managing such risk, the extensive margin effect of deposit insurance
is to promote the creation of a risk management desk. In this sense, deposit insurance
coverage again acts very similarly to bank capital, as analysed in Section 4.2.

13This specification resembles the sleepy (or inactive) depositor specification in Chen et al. (2010), al-
though we assume that depositors’ type is known and, as a consequence, the bank offers two deposit rates.
Alternative approaches to modelling deposit insurance include Allen et al. (2018) and Dávila and Goldstein
(2023).
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Let rI
2 and rU

2 denote the promised time 2 repayment for insured and uninsured depos-
itors, respectively. As before, we solve the model by working backwards, starting with
withdrawal decisions of the fraction 1−σ of uninsured depositors, for a given deposit
contract {1,rI

2,rU
2 }, a fraction of insured depositors σ , capital structure k, and risk manage-

ment choice z. To simplify the exposition, we introduce the subscript σ for all thresholds
and define the average deposit rate as r2,σ ≡ σrI

2+(1−σ)rU
2 . As in the baseline model, we

describe depositors’ withdrawal decisions for a generic ℓ because its realization is known
when depositors choose to withdraw.

In the baseline model, panic-driven runs exist only if there is strategic complementarity
in depositors’ withdrawal decisions, which occurs when the interim asset value ℓ is insuf-
ficient to cover the repayment of all depositors at time t = 1, ℓ < 1− k. Generalizing this
bound by noting that a fraction σ of depositors is insured and never withdraws, strategic
complementarity in depositors’ withdrawal decisions arises only for interim asset values
below a threshold ℓ̌σ (k) =

(
1−σ +σ/rU

2
)
(1−k), which we derive in Appendix A.6. Note

that ℓ̌ equals 1− k for σ = 0, as in the baseline model, and dℓ̌σ /dσ < 0. Proposition 6 ex-
tends our previous results in Propositions 1 and 2 on the existence of a unique equilibrium
of the withdrawal game.

Proposition 6. Uninsured depositors withdraw at time 1 only if the fundamental of the economy,
θ , is below a critical cutoff. This threshold is given by θ σ whenever ℓ≥ ℓ̌σ and by θ ∗

σ for ℓ< ℓ̌σ , with
θ ∗

σ ≥ θ σ . Both run thresholds, which are defined in the Appendix, decrease in σ : ∂θ σ /∂σ < 0 and
∂θ ∗

σ /∂σ < 0. Furthermore, ∂θ ∗
σ /∂ℓ < 0, ∂ 2θ ∗

σ /∂ℓ2 > 0, ∂ 2θ ∗
σ /∂ℓ∂σ > 0, and ∂θ ∗

σ /∂ rI
2 > 0.

Proof: See Appendix A.6. □
As in the baseline model, a unique threshold equilibrium emerges in the characteriza-

tion of depositors’ withdrawal decisions. The exact threshold and the type of runs depend
on the level of the interim asset value relative to the amount of bank capital and on the
degree of DI coverage, summarized in the cutoff ℓ̌σ (k). When the interim asset value, the
fraction of insured depositors, and bank capital are high, so that ℓ≥ ℓ̌σ , only fundamental
runs occur, while panic runs emerge in equilibrium otherwise. Importantly, DI increases
financial stability along two dimensions: it enlarges the range of parameters in which only
fundamental runs occur, and it reduces the strategic complementarity in depositors’ with-
drawal decisions. To focus on situations in which financial fragility is of real concern, we
again restrict attention to the case of ℓ < ℓ̌σ henceforth. This is equivalent to assuming that
the degree of deposit insurance coverage, σ , is not so large that all fragility is eliminated.

Figure 3 shows the effect of deposit insurance on bank fragility, as established in Propo-
sition 6. First, we can see that the equilibrium run threshold, for any given interim asset
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Deposit insurance and bank fragility

Figure 3: Bank failure thresholds, θ ∗
L,σ , for three different levels of deposit insurance σ as a

function of ℓL in the absence of risk management (z = 0). The gray solid line corresponds to the
case without deposit insurance, σ = 0. The blue dashed and green dash-dotted lines correspond
to deposit insurance coverage levels of σ = 0.1 and σ = 0.2, respectively. The figure uses the same
parameters as in Figure 1; deposit rates are rI

2 = 1 and rU
2 = 6/5.

value, is higher when the deposit insurance coverage is lower, meaning that the probabil-
ity of a run is higher. Second, the fundamental run threshold θ σ decreases in σ because
insured depositors receive a lower deposit rate, i.e., rI

2 < rU
2 . Intuitively, the bank is more

able to meet its payment obligation at time 2 if no uninsured depositor runs at time 1.

5.1 Deposit insurance and risk management incentives

Having characterized uninsured depositors’ withdrawal decisions, we now move to the
bank’s choice of risk management. To do so, we first restate the expression for expected
bank profits. Relative to the expression in (6), we need to replace θ ∗ with the one charac-
terized in Proposition 6. We also account for the two types of depositors. Expected profits
are then given by:

Πσ (z) ≡ pℓ
∫ 1

θ∗
L,σ

[Rθ − (1− k)r2,σ ]dθ +(1− pℓ)
∫ 1

θ∗
H,σ

[Rθ − (1− k)r2,σ ]dθ − c
z2

2
−F1{z>0},
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as the bank only makes a positive profit if no run occurs. Next, we analyze the bank’s risk
management incentives, again ignoring the fixed cost, to find the level of risk management,
ẑσ , that maximizes profits. Proposition 7 complements Proposition 3 by analyzing how
the bank’s incentives are affected by DI and by the deposit rates rI

2 and rU
2 .

Proposition 7. Let ℓL < ℓ̌σ . The incentives to manage risk increase as the interim asset value in
the event of a shock decreases, dẑσ /dℓL < 0, and the incentives decrease as the fraction of insured
depositors increases, dẑσ /dσ < 0.

Proof: See Appendix A.8. □
The first result is identical to that in Proposition 3, suggesting that the key mechanics

with deposit insurance are similar to the baseline model. The second result about the
effect of DI coverage is intuitive: more insured depositors have a stabilizing effect on the
bank, reducing its incentives and need to engage in risk management.

5.2 Deposit insurance and risk management failures

Having analyzed the bank’s risk management incentives in the presence of deposit in-
surance, we next revisit the existence of risk management failures (as characterized in
Proposition 4) and show that our previous finding—the bank chooses not to set up any
risk management operations for low enough interim asset values—continues to hold.
What is more, DI can be a catalyst for setting up a risk management desk, similar to bank
capital.

Proposition 8. Let ℓL < ℓ̌σ and c > ĉσ , for some ĉσ > 0. Then, for any F > 0, there exists an
interim asset value ℓ̃L(F) ∈ (0, ℓ̂σ (0)) such that the optimal amount of risk management is zero,
z∗σ = 0, when ℓL < ℓ̃L (F). The fixed cost threshold F̂σ below which some risk management is
optimal increases with the level of DI coverage, dF̂σ /dσ > 0.

Proof: See Appendix A.9. □
Intuitively, the complementary relationship between deposit insurance and setting up a

risk management desk arises because of the stabilizing effect of DI, which increases the
expected profits of the bank from risk management by reducing the probability of a run.

6 Discussion of robustness and extensions

We discuss the robustness of our finding of risk management failures to the endogenization
of deposit rates in Section 6.1. We then extend our model by endogenizing bank capital
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structure in 6.2. Section 6.3 solves a constrained planner problem and shows that there is
a wedge between the private and social incentives for risk management, confirming our
argument that there are failures in risk management. Finally, we consider an alternative
modelling approach to risk management in Section 6.4 and show that our main results are
robust.

6.1 Endogenous deposit rates

In order to clearly illustrate the main forces at work, in the analysis above we held all
variables constant, including the promised repayment to depositors, when varying the
interim asset value. However, the equilibrium repayment to depositors, r2, clearly should
depend on the interim asset value since changes in the distribution of ℓ affect the expected
value of the deposit claim and hence shift depositors’ participation constraint. Here, we
demonstrate that our main result on risk management failures continues to hold even when
the indirect effects arising from the need to satisfy depositors’ participation constraint are
taken into account. As a preliminary first step, the following lemma establishes the effect
of a change in the interim asset value ℓL on r2 for the baseline model with σ = 0 and no
risk management, z = 0.

Lemma 1. A lower interim asset value ℓ= {ℓL,ℓH} is associated with a higher deposit repayment
r2 in equilibrium, i.e., dr∗2/dℓL < 0 and dr∗2/dℓH < 0.

Proof. See Appendix A.10. □

The lemma above shows that the anticipation of a larger negative shock leads the bank
to offer a higher repayment r2 to depositors. In the next lemma we study the implication
for the overall effect of a change in the level of the interim asset value ℓL on the run
threshold.

Lemma 2. For ℓH < 1− k, the run threshold decreases in the interim asset value upon a negative
shock, i.e., dθ ∗

L /dℓL < 0.

Proof. See Appendix A.11. □

Lemma 2 establishes that similar comparative statics to those obtained in Proposition 2
(for the case when r2 is held fixed) also hold when r2 is endogenous and pinned down by the
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binding participation constraint of investors.14 This occurs even though, as shown above
in Lemma 1, r2 must increase whenever ℓL decreases in order to compensate depositors
for the potentially larger drop in the interim liquidation value of the bank’s assets. The
increase in r2, however, reduces depositors’ incentives to run, thus lowering θ ∗, and at
least partially offset the effect of the drop in ℓL. Nevertheless, Lemma 2 establishes that the
overall equilibrium effect of a change in ℓL is unchanged, since the indirect effect coming
from the change in r2 does not fully offset the direct effect. The implication is that, as
before, a larger negative shock to the interim value of bank assets is destabilizing. Having
characterized how the probability of a run changes with ℓ, the following proposition
restates our main result in the context where r2 (ℓL) endogenously responds to the size of
the negative shock to the interim asset value of the bank.

Proposition 9. There is a value č (defined in the appendix) such that, if c > č, then for any F > 0
there exists a sufficiently low but positive interim asset value ℓL such that the optimal amount of
risk management effort is zero, z∗ = 0.

Proof. See Appendix A.12. □

Proposition 9 shows that our main result on risk management failures continues to hold
when r2 is endogenized. As before, the constraint that c not be too small is there only to
guarantee that risk management is not so cheap that the bank can simply fully offset any
shock, no matter how negative. Hence, the bank’s decision not to manage risk does not
arise from the assumption that deposit interest rates were fixed and did not appropriately
reflect economic conditions, but rather stems from how bank incentives are altered as
shocks become sufficiently large.

6.2 Endogenous bank capital

So far, we have treated bank capital as exogenous, so that the comparative statics with
respect to k could be interpreted as the response to a change in binding capital require-
ments, for instance. In this section, we endogenize the bank’s capital structure. We show
that the bank finds it optimal to raise a strictly positive amount of capital as long as the
cost of bank capital is not too high relative to the cost of deposit funding. Intuitively, the

14The lemma focuses on the deposit rate corresponding to the solution to the binding participation
constraint. In principle, the bank may find it optimal to increase r2 further in this setting, leaving some
slack in the depositors’ participation constraint. Such strategy could be optimal since a higher deposit rate
reduces the run threshold and so may have a beneficial effect on the bank’s expected profits. As shown in
Ahnert et al. (2023), parametric restrictions on the investment profitability R ensure that the participation
constraint binds in equilibrium.
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bank values the role of bank capital as a non-contingent risk management tool that can
reduce the probability of bank runs in all states.

To study this issue, suppose that the banker raises capital and deposits at the beginning
of t = 0, so that k and r2 are jointly determined. Assume also that the outside options of
depositors and bank equity holders are ρD and ρE ≥ ρD, respectively.15

To ease the exposition, we focus on a parameter space where depositors’ participation
constraint binds. Thus, the banker’s problem is:

max
k,r2

Π = pℓ
∫ 1

θ∗
L

[Rθ −(1−k)r2]dθ +(1− pℓ)
∫ 1

θ∗
H

[Rθ −(1−k)r2]dθ −ρEk−c
z2

2
−F1{z>0}, (9)

where the term ρEk represents the cost of equity for the bank, or equivalently the bank
shareholders. This maximization problem is subject to the participation constraints of the
banker and depositors:

Π ≥ 0 (10)

V ≡ pℓ

[∫
θ∗

L

0

ℓL + z
1− k

dθ +
∫ 1

θ∗
L

r2 dθ

]
+(1− pℓ)

[∫
θ∗

H

0

ℓH

1− k
dθ +

∫ 1

θ∗
H

r2 dθ

]
= ρD, (11)

where we used the fact that depositors receive an equal share of liquidation proceeds at
time 1. Note that risk management effort is determined at the end of time 0, so z∗ = z∗(k,r2).

We can now state the following result, which characterizes the bank’s optimal capital
structure.

Proposition 10. The bank is funded with equity and debt, k∗ ∈ (0,1), if the cost of equity, ρE , is
not too high relative to the cost of debt, ρD.

Proof: See Appendix A.13. □
This proposition states that a positive but not too high equity premium results in a

positive and interior choice of bank capital, k∗ ∈ (0,1).16 The intuition stems from recog-
nizing that panic runs, which are the result of coordination failures among depositors, are

15While it is widely accepted that the cost of bank equity is higher than the cost of debt, due to factors such
as taxes (Modigliani and Miller 1958, 1963), bankruptcy costs (Myers 1977), asymmetric information (Myers
and Majluf 1984), as well as a cost of contingencies and limited financial market participation (Barberis
et al. 2006; Guiso et al. 2008; Guiso and Sodini 2013), the magnitude of the equity premium is debated
(Admati et al. 2013). See Allen et al. (2015) for a general equilibrium framework in which the cost of equity
endogenously emerges as higher than the cost of deposits.

16The first-order condition for bank capital may have multiple solutions, so there may be several local
maxima. This arises from the interaction between the bank capital choice and its risk management effort,
captured by the term dz∗

dk . In any case, the bank will select the global maximum, which is interior.
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welfare destroying. As a result, the use of instruments or tools that can reduce the prob-
ability of a run will, all else equal, lead to a Pareto improvement as both depositors and
the bank benefit from this reduction. Therefore, as long as the cost of equity capital, ρE , is
not too much higher than the cost of debt, ρD, raising at least some amount of equity will
be optimal for the bank. Ceteris paribus, depositors also benefit from capital because (i) it
reduces the run threshold θ ∗, thus making it more likely that they receive the promised
payment at date 2; and (ii) it increases the repayment upon a run. In equilibrium, this
then allows the bank to reduce the date 2 repayment, r∗2, and increases its profits.

6.3 Constrained inefficiency

In this section, we consider a planner’s problem and compare its solution to the one
obtained privately by a bank. This analysis aims at establishing that the private incentives
for risk management effort are insufficient and that our main result is indeed one of a
failure in risk management. The key friction that the planner can resolve is that it can
commit, when raising deposit funding, to a risk management choice. By contrast, the
bank has no such commitment since risk management actions are not contractible and any
decision it may make about managing risk only occurs after it has raised funds and, as a
consequence, promised repayments to depositors have been set.

We consider a constrained planner who maximizes utilitarian welfare and takes the
incomplete information structure of the economy as given and, in particular, takes depos-
itors’ withdrawal decisions as given. Thus, the planner P takes the failure threshold θ ∗

specified in Proposition 1 as given, as does the bank. We focus again on the case where
bank leverage is relatively high, 1− k > ℓH , so there are panic runs. We also assume that
the participation constraint of investors binds, which pins down the equilibrium deposit
rate. We have the following results.

Proposition 11. There are risk management failures along two dimensions:

(i) When engaging in risk management, the planner chooses a higher level than the bank, ẑP > ẑ.

(ii) The planner engages in risk management for a larger range of parameters, F̂P > F̂ .

Proof: See Appendix A.14. □
The intuition for these results is as follows. The commitment power of the planner

implies that the deposit rates are responsive to future risk management choices, reducing
the funding cost of the bank. As a result, the planner chooses more risk management on
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the intensive margin. On the extensive margin, it also sets up a risk management desk for
a larger range of fixed costs. In this sense, the privately optimal risk management failures
are excessive. A direct implication of these results is that the bank is excessively fragile
(because it engages in too little risk management), which is socially costly due to panic
runs.

6.4 Alternative modelling of risk-management: An interest rate swap

In the baseline model, we considered the benefit of risk management to be narrowly
targeted to address the specific risk to which the bank is exposed, namely the possibility
that the interim value of assets turns out to be low. As a result, our notion of risk
management is geared towards raising the liquidation value from ℓL to ℓL + z in the state
with the negative shock. In this section, we broaden the analysis by considering an
alternative modelling approach to risk management that resembles an interest rate swap.
This serves two purposes. First, it demonstrates that our result on risk-management
failures is robust to allowing for more general, and perhaps also more realistic, tools for
managing risk. Second, it provides a microfoundation for the assumption of a convex cost
of risk management used in the previous sections by showing that a similar cost structure
can arise endogenously with other risk management tools.

Specifically, an interest rate swap is a derivative contract in which two counterparties
exchange cash payments based on the realization of the underlying risk-factor, i.e., changes
in the interest rate. Interpreting state L and the associated low interim asset value ℓL as the
result of an interest rate hike, entering into an interest rate swap at date 0 allows the bank
to obtain extra resources z in state L in exchange for a cash payment in state H. Importantly,
the transfer of resources is independent of whether the bank winds up liquidating any
assets (i.e., independent of whether a run occurs or not) and does not require funding at
t = 0 beyond setting up the risk management desk at fixed cost F , consistent with Bretscher
et al. (2018).

For simplicity, we assume that the swap contract is free from counterparty risk and
senior to other claims on the bank (see Dasgupta 2004 for a similar assumption). This
could be because of collateral set aside for the transaction, which is then exempt from
the resources of the bank depositors have access to when running (see, e.g., Ahnert et al.
2019). Also for simplicity, we focus on the symmetric case pℓ = 1/2, which makes the
design of an actuarially fair swap particularly simple: the bank receives z in state L and
pays z in state H, for which it has to partially liquidate some investment. The rest of the
model is unchanged and we introduce the subscript S, for “Swaps,” for all thresholds and
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for bank profits.
The analysis proceeds following the same steps as in the baseline model. First, we

characterize depositors’ withdrawal decisions. Then, we move to analyze the bank’s
incentives to manage risk and demonstrate that when the shock to the interim asset
value is severe, the bank has no incentives to enter into an interest rate swap, i.e., a
risk-management failure emerges.

Proposition 12. Depositors withdraw at the interim date in state L and H if the fundamental of
the economy θ falls below the cutoffs θ ∗

L,S and θ ∗
H,S, respectively. The threshold θ ∗

L,S decreases in z,
while θ ∗

H,S increases.

Proof: See Appendix A.15. □
Having characterized depositors’ withdrawal decisions, expected bank profits are as

follows:

Πs(z)≡ pℓ
∫ 1

θ∗
L,S

[Rθ +z−(1−k)r2]dθ +(1− pℓ)
∫ 1

θ∗
H,S

[Rθ
ℓH − z
ℓH

−(1−k)r2]dθ −F1{z>0}, (12)

where the first term captures the profits the bank accrues in state L, ΠS,L, while the second
one represents the profits accrued in state H, ΠS,H . The effect of the risk management is
twofold. First, it affects the bank’s exposure to runs (via changes in the failure threshold).
Second, it affects the amount of profits the bank accrues conditional on surviving a run.

The left panel of Figure 4 illustrates the result of Proposition 12: a higher z is associated
with a lower failure threshold in the low state, θ ∗

L , and a higher failure threshold in the
high state, θ ∗

H . Moreover, the effect of risk management is different in each state: when z

is high, an increase in z has a larger impact on bank fragility in the high state, θ ∗
H , than in

the low state, θ ∗
L . This differential effect on the failure thresholds contributes to explaining

the different shapes of the bank’s profits in the right panel of Figure 4. Entering into the
swap contract benefits the bank in state L, but entails a cost in state H. When z is high, an
increase in z has a stronger impact on the profits in state H line than in state L, so that the
endogenous cost of additional risk management at that point exceeds its benefits.

Figure 4 also shows that the endogenous cost of risk management, which here is
the reduction in the bank’s profits in state H, is convex, much like the reduced-form
assumption on risk management used in the baseline model. Denoting such cost as C, the
following proposition provides a formal characterization of this result.

Proposition 13. If ℓH ≤ (1− k)/2, then the endogenous cost of risk management is convex,
d2C/dz2 > 0.
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Equilibrium run thresholds and bank profits
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Figure 4: The left panel shows the run thresholds θ ∗
L,S (solid line) and θ ∗

H,S (dotted line)
as a function of the risk management intensity z. The right panel shows bank profits ΠL,S
(solid line) and ΠH,S (dotted line) as a function of z. Parameters: R = 5, k = 1/5, ℓL = 2/5,
ℓH = 9/10, and r2 = 2.

Proof: See Appendix A.16. □
The proposition shows that in the context of an interest rate swap, an endogenous

convex cost of risk management emerges, thus providing a micro-foundation for the
convex cost used in the main model. The convexity of the risk-management cost hinges
on the convexity of the failure threshold θ ∗

H,S with respect to z. To prove this analytically,
Proposition 13 makes use of a sufficient condition related to the degree of leverage of the
bank. However, the result holds much more generally, as various numerical examples,
including the one illustrated in Figure 4, show.

The endogenous costs of risk management makes it difficult to characterize the bank’s
risk-management decision analytically. For this reason, we perform the remainder of the
analysis in this section numerically. The left panel of Figure 5 shows that, consistent with
the baseline model, the choice of a positive level of risk management, which we denote
as z∗ ≡ ẑS, decreases in the interim asset value ℓL and drops to zero when the shock to
the interim asset value is severe. As in the baseline model, for a positive fixed cost F , the
bank will find it optimal not to do any risk management, i.e., not to enter into the swap,
if the interim asset value in state L is very low. The right panel in Figure 5 illustrates the
underlying mechanism for this result: as ℓL decreases, the bank’s expected profits (across
both states) decrease due to the bank’s choice of a progressively higher z. As illustrated in
Figure 4, for sufficiently high values of z the losses in state H become progressively larger
and overcome the gains in state L, so it is optimal for the bank to do no risk management.
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Risk management choice and expected bank profits
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Figure 5: The left panel shows the equilibrium level of risk management z∗ as a function
of the realized interim asset value ℓL. The right panel shows the expected profits when
the bank chooses a positive risk management intensity ẑS (solid line) and those when the
bank does not engage in any risk management (dotted gray line). The parameters are the
same as in Figure 4 and F = 2/5.

7 Conclusion

Runs on banks have been pervasive historically, and recent episodes demonstrate that these
continue to be a concern for bank shareholders, depositors, and regulators. Moreover, the
failure of a number of financial institutions in 2023 proved once again that the conditions
at which banks can obtain funds at short notice to meet withdrawals play a crucial role
for their stability. Specifically, negative shocks to the interim value of bank assets, even
if fully anticipated, can lead to greater instability and, ultimately, increase the risk of
a run. Despite the apparent availability of appropriate tools to manage liquidity risk,
these channels of instability and their implications for risk management have been largely
ignored up to now.

Incorporating such uncertainty into a canonical global-games model of bank runs,
we consider the question of what incentives a bank may have to hedge these risks and
engage in activities geared toward reducing exposure to shocks to the interim value
of their assets, hence reducing the likelihood of a panic among depositors. We show
that even if a bank’s marginal incentives to manage risk may increase as the severity of
the possible negative shock increases, the bank’s profitability nevertheless declines. For
sufficiently large negative shocks, therefore, the bank does not find it profitable to set up
risk management operations if it faces any kind of fixed, upfront cost to doing so. As
a result, risk management operations are abandoned (or never entertained in the first
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place) precisely when managing those risk would have the largest impact in terms of
improving financial stability. Our framework is useful for understanding how private
sector incentives to manage risk may differ from social incentives, and what role the costs
of setting up such operations play. It also helps understand the benefit of different tools
that might be available either to the banker or to a regulator, such as the use of bank capital
as an alternative, non-contingent tool for managing risk, or of deposit insurance coverage.

One aspect that we have ignored, however, is the possibility that economic shocks that
reduce the interim value of the bank’s assets may similarly affect their long term value, thus
also reducing the bank’s revenue even if the project is held until maturity. In the context of
the model, this would be like assuming that ℓL and R are positively correlated. While a full
analysis of this case is beyond the scope of this paper, it is clear that similar issues related
to failures in risk management are likely to arise, and may even be compounded: as the
negative shock reduces R, depositors are more inclined to run, so that financial fragility
increases. This effect complements the increased fragility stemming from reductions in
the interim asset value, and further increases the probability of a run, making it more
likely that the bank will abandon all efforts to manage risk since they will not be able to
get sufficient compensation for doing so. A similar (and related) result likely obtains if
one considers only the issue of credit risk management, and its impact on depositor run
risk. Alternative: The insights here are then useful for the policy debate on how best to
encourage bank risk management more broadly, and how to reduce systemic risk in the
financial system.
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A Appendix

A.1 Proofs of Proposition 1 and 2

A.1.1 Low liquidation value relative to depositor base

Consider ℓ < 1− k. The proof builds closely on Carletti et al. (2023b), which adapt the proof in
Goldstein and Pauzner (2005) to prove the existence and uniqueness of a monotone equilibrium in
a setting with profit-maximizing banks.

In the intermediate region θ ∈ (θ ,θ ), a depositor’s withdrawal decision depends on the actions
taken by the other depositors as these determine whether the bank is illiquid or insolvent. Recall
that n ∈ [0,1] is the fraction of consumers who withdraw at t = 1. When the liquidation proceeds
at t = 1 are insufficient to meet withdrawals, n > n ≡ ℓ/(1−k)< 1, the bank is illiquid. Otherwise,
it continues to operate until t = 2. If the bank cannot meet the remaining withdrawals, n > n̂, it is
bankrupt due to insolvency at t = 2, where n̂ can be derived from the following solvency condition:

Rθ

(
1− (1− k)n

ℓ

)
− (1− k) (1−n) r2 = 0, (13)

which gives

n̂ ≡ Rθ − (1− k)r2
Rθ (1−k)

ℓ − (1− k)r2

< 1. (14)

The first term of Equation (13) is the return on the part of the project that was not liquidated at
t = 1 and the second term represents remaining withdrawals at t = 2. Table 2 shows the payoffs of
depositors associated with the two withdrawal actions. Depositors’ payoffs depend on the realized
economic fundamental θ and the proportion n of depositors withdrawing:

aggregate action
individual action

n ≤ n̂
bank is solvent

n̂ < n ≤ n
bank is insolvent
but liquid at t = 1

n > n
bank is insolvent

and illiquid at t = 1

Withdraw 1 1

{
1 w.p. ℓ

(1−k)n

0 w.p. 1− ℓ
(1−k)n

Don’t withdraw r2 0 0

Table 2: Payoffs in the withdrawal game for intermediate realized fundamentals, θ ∈ (θ ,θ ).

For vanishing signal noise, the Laplacian property holds and we can write the indifference
condition of the marginal depositor as:

∫ n̂

0
r2dn =

∫ n

0
dn+

∫ 1

n

ℓ

(1− k)n
dn ≡ α = ℓ/(1− k) [1− ln (ℓ/(1− k))] . (15)
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Using the marginal depositor’s expected payoff from withdrawing at t = 1, α , we can express:

θ
∗ =

(1− k)r2

(
1− α

r2

)
R
(

1− 1−k
ℓ

α

r2

) = θ
r2 −α

r2 − α(1−k)
ℓ

> θ , (16)

which we refer to as the panic-run threshold. Throughout we focus on r2 > α(1−k)/ℓ. Otherwise,
a marginal depositor would not exist, resulting in certain bank runs. This cannot be optimal for
the bank, which would make zero expected profits in this case. Hence, the bank chooses to offer a
contract that satisfies the above inequality. That is, the long-term deposit rate is sufficiently high
to compensate for the risk of (panic) runs at t = 1. Formally, when the marginal depositor does
not exist, it is a dominant strategy for depositors to withdraw at time 1, so θ ∗ = θ . This arises if
Equation (15) does not hold, which is the case if

r2 < r̂2 ≡

(
θ

θ
− ℓ

1−k

)(
1− ln

(
ℓ

1−k

))
θ

θ
−1

, (17)

where r̂2 >
α(1−k)

ℓ .

A.1.2 High liquidation value relative to depositor base

Consider ℓ ≥ 1− k. For ℓ = 1− k, we have n = 1 and α = 1. Furthermore, the bank solvency
condition, characterized in (13) can be rearranged as follows:

[Rθ − (1− k)r2] (1−n) = 0,

which is positive for θ > θ and negative for θ < θ . It follows that a depositor’s expected payoff from
withdrawing at t = 1 and t = 2 is independent of n, and so the relevant bank failure threshold is θ

because r2 > 1. Intuitively, the withdrawal of deposits does not impose a loss on other depositors
when ℓ= 1− k. The fundamental-run threshold in (4) decreases in bank capital:

∂θ

∂k
= −r2

R
< 0.

Hence, the solvency condition in (13) becomes less binding for any n when ℓ exceeds 1− k. In-
tuitively, a high liquidation value relative to the deposit base means that withdrawals by other
depositors increases a given depositor’s incentive not to withdraw. It follows that, for any ℓ > 1−k,
the relevant threshold is still θ . Similarly, we can derive ∂θ /∂R < 0.

Finally, we have ∂ 2θ /∂k2 = 0 and that the lower dominance bound is independent of the
liquidation value, ∂θ /∂ℓ= 0 = ∂ 2θ /∂ℓ2 = ∂ 2θ /∂k∂ℓ.
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A.1.3 Comparative statics of the failure threshold with panics

Next, we analyze how the bank failure threshold with panics, θ ∗, changes with bank capital, the
interim liquidation value of the bank asset, and both of them. Since ℓ is used to generically denote
both ℓL + z and ℓH , and since z and ℓL are perfect substitutes, it follows that the comparative statics
with respect to ℓ below applies equally to changes in ℓL and ℓH , as well as changes in z.

Note that the interim liquidation value and bank capital only enter into the failure threshold in
Equation (5) as their ratio, ℓ/(1− k) ≡ x. Thus, dx/dℓ= (1− k)−1 > 0, dx/dk = ℓ(1− k)−2 > 0, and
d2x/dkdℓ= (1− k)−2 > 0. Using this definition, we can express the marginal depositor’s expected
utility from withdrawing as

α = x(1− ln(x)), (18)

with dα/dx = − ln(x) > 0 because x < 1.

Inserting the definitions of α and x into the failure threshold in Equation (5) yields:

θ
∗ = θ

r2 − x(1− ln(x))
r2 − (1− ln(x))

> θ . (19)

Define β as θ ∗ ≡ θβ , so β > 1 for panic runs. We can write the difference as:

θ
∗−θ = θ

(1− x)(1− ln(x))
r2 − (1− ln(x))

= θ
1− x
r2

1−ln(x) −1
, (20)

which decreases in x because both effects of x reduce the left-hand side: d(θ ∗−θ )/dx < 0. This
implies that d(θ ∗ − θ )/dℓ < 0 and d(θ ∗ − θ )/dk < 0, so both higher bank capital and a higher
liquidation value reduce coordination failure among depositors.

Note that dθ ∗/dℓ = (dθ ∗/dx)(dx/dℓ) because dθ /dℓ = 0. Moreover, dθ ∗/dk = βdθ /dk +

(dθ ∗/dx)(dx/dk). Thus, it is critical to determine the derivative with respect to x:

dθ ∗

dx
= θ

(1− ln(x))2 − r2 (1/x− ln(x))

[r2 − (1− ln(x))]2
< 0, (21)

because x < 1 and r2 > α/x = 1− ln(x) in any equilibrium. (Recall that this is the condition to
ensure that there is not a certain run on the bank, as described above.) The numerator is negative
even at r2 = α/x = 1− ln(x), and the numerator decreases in r2. As a result of dθ ∗/dx < 0, we
obtain dθ ∗/dk < 0 and dθ ∗/dℓ < 0.

Turning to second derivatives, note that d2θ ∗/dℓ2 = (d2θ ∗/dx2)(dx/dℓ) because d2x/dℓ2 = 0.
Thus, d2θ ∗/dℓ2 > 0 if and only if d2θ ∗/dx2 > 0. Moreover, d2θ ∗/dℓdk = (dθ ∗/dx)(d2x/dkdℓ) +

(d2θ ∗/dx2)(dx/dℓ). Hence, a sufficient condition for d2θ ∗/dℓdk > 0 is also d2θ ∗/dx2 > 0. We next
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determine the second derivative with respect to x:

θ
[−1

x 2(1− ln(x))− r2(− 1
x2 − 1

x )][r2 − (1− ln(x))]− 2
x

[
(1− ln(x))2 − r2(

1
x − ln(x))

]
[r2 − (1− ln(x))]3

,

which after simple manipulations gives:

d2θ ∗

dx2 =
θ r2

x2 [r2 − (1− ln(x))]3
{

2(1− x)+ (1+ x)
[
r2 − (1− ln(x))

]}
> 0. (22)

As a result, d2θ ∗/dℓ2 > 0 and d2θ ∗/dℓdk > 0. To obtain the sign of d2θ ∗/dk2, we directly differen-
tiate θ ∗ to obtain:

dθ ∗

dk
=

r2
2 (x− r2 − ln (x))

R (r2 − (1− ln (x)))2 < 0 (23)

d2θ ∗

dk2 =
r2

2
R(1− k)

2 (r2 − (x− ln (x)))+ (x−1) (r2 − (1− ln (x)))

(r2 − (1− ln (x)))3 > 0. (24)

A.2 Proof of Proposition 3

The comparative statics of ẑ with respect to ℓL, k, and pℓ can be obtained using the implicit function
theorem. The second-order condition is:

d2Π
dz2 = −pℓR

(
dθ ∗

L

dz

)2

− pℓ[Rθ
∗
L − (1− k)r2]

d2θ ∗
L

dz2 − c < 0. (25)

Together with the sign of the cross-partial with respect to ℓL:

d2Π
dzdℓL

= −pℓR
dθ ∗

L

dz
dθ ∗

L

dℓL
− pℓ[Rθ

∗
L − (1− k)r2]

d2θ ∗
L

dzdℓL
< 0, (26)

we arrive at dẑ/dℓL < 0. Similarly, we analyze the sign of the cross-partial with respect to k:

d2Π
dzdk

= −pℓ

[
R

dθ ∗
L

dk
+ r2

]
dθ ∗

L

dz
− pℓ[Rθ

∗
L − (1− k)r2]

d2θ ∗
L

dzdk
< 0, (27)

because d2θ ∗
L

dzdk = d2θ ∗
L

dℓdk > 0 as shown in the proof of Proposition 1 and Rdθ ∗
L /dk+ r2 < 0. To see this,

we substitute the expression for dθ ∗
L /dk in (23). After a simple manipulation, we can rewrite:

R
dθ ∗

L

dk
+ r2 = −r2

[
r2

r2 − (1− ln(x))
r2 − (x− ln(x))
r2 − (1− ln(x))

−1
]
< 0,
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since r2
r2−(1−ln(x)) > 1 and x = ℓ

1−k < 1 so that also r2−(x−ln(x))
r2−(1−ln(x)) > 1. Therefore, dẑ/dk < 0. Finally:

d2Π
dzd pℓ

= [Rθ
∗
L − (1− k)r2]

(
−dθ ∗

L

dz

)
> 0, (28)

so dẑ/d pℓ > 0. Hence, the results in Proposition 3 follow.

A.3 Proof of Proposition 4

We start the proof by establishing some preliminary results in the following three Lemmas. Denote
ẑ(ℓ) by the optimal level of risk management (ignoring F) for a given interim liquidation value.

Lemma 3. For all ℓL such that θ ∗
L (ẑ(ℓL),ℓL) < θ , the equilibrium run threshold θ ∗

L (ẑ(ℓL),ℓL) decreases in
ℓL, since the change in risk management does not fully offset changes in the interim liquidation value.

Proof. We prove Lemma 3 by contradiction. Recall that dẑ/dℓL < 0 from Proposition 3 and
that ∂θ ∗

L /∂ z ≡ ∂θ ∗
L /∂ℓL < 0. Consider two different values for ℓL, ℓ′L and ℓ′′L, with ℓ′L < ℓ′′L, and

suppose that, contrary to the claim, θ ∗
L (z

∗ (ℓL) ,ℓL) actually increases in ℓL, so that θ ∗
L (z

′ (ℓ′L) ,ℓ′L) <

θ ∗
L (z

′′ (ℓ′′L) ,ℓ′′L), where z′ and z′′ represent the bank’s optimal choices of z in each case. Since we
know θ ∗

L (ẑ (ℓL) ,ℓL) decreases in ℓL for a given z, we can only have θ ∗
L (z

′ (ℓ′L) ,ℓ′L) < θ ∗
L (z

′′ (ℓ′′L) ,ℓ′′L) if
z′ >> z′′. Moreover, it must be that ℓ′L + z′ > ℓ′′L + z′′.

Consider the FOC for the case of ℓL = ℓ′′L. To be explicit, it is worth rewriting it with ℓ′′L and z′′:

−pℓ
∂θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L)
∂ z

(Rθ
∗
L (z

′′ (ℓ′′L) ,ℓ′′L)− (1− k)r2)− cz′′ = 0.

Suppose the solution to the risk management problem is interior and denote by ž the value of z

that would give us the same run threshold if instead ℓL = ℓ′L: θ ∗
L (ž (ℓ

′
L) ,ℓ′L) = θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L), and

note that ž ∈ (z′′,z′). Now consider the derivative of the bank’s profit expression for the case where
ℓL = ℓ′L, evaluated at z = ž:

−pℓ
∂θ ∗

L (ž (ℓ
′
L) ,ℓ′L)

∂ z
(Rθ

∗
L (ž (ℓ

′
L) ,ℓ′L)− (1− k)r2)− cž.

Since θ ∗
L (ž (ℓ

′
L) ,ℓ′L) = θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L) and ℓ′L + ž = ℓ′′L + z′′, this can be rewritten as:

−pℓ
∂θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L)
∂ z

(Rθ
∗
L (z

′′ (ℓ′′L) ,ℓ′′L)− (1− k)r2)− cž.

The expression above is the same as the FOC for the case where ℓL = ℓ′′L, except for the last term, cž.
However, we know that at equilibrium the derivative of bank profits equals zero when evaluated
at z = z′′. Hence, this derivative must be negative for z = ž. Hence, contrary to the supposition, it
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cannot be optimal for the bank to choose a value of z such that ℓ′L + z′ > ℓ′′L + z′′, which then implies
that the inequality θ ∗

L (z
′ (ℓ′L) ,ℓ′L) < θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L) cannot hold. The result of Lemma 3 follows. □

Lemma 4. For all ℓL such that θ ∗
L (ẑ(ℓL),ℓL) < θ , the bank’s expected profits Π(ẑ;ℓL,ℓH) increase in ℓL.

Proof. We prove Lemma 4 using the Envelope theorem. Denote as Π (ẑ (ℓL) ;ℓL,ℓH) the bank’s
expected profits evaluated at the ẑ obtained from the bank’s first order condition with respect to z:

Π (ẑ (ℓL) ;ℓL,ℓH) = (1− pℓ)
∫ 1

θ ∗
H

(Rθ − (1− k)r2)dθ + pℓ
∫ 1

θ ∗
L (ẑ(ℓL),ℓL)

(Rθ − (1− k)r2)dθ

− c
2
[ẑ (ℓL)]

2 −F1{z>0}.

Hence, we can compute:

dΠ (ẑ (ℓL) ,ℓL)

dℓL
=

∂ Π (·)
∂ z

dẑ (ℓL)

dℓL︸ ︷︷ ︸
=0

+
∂ Π (·)

∂ℓL
,

where we use that ∂ Π (·)/∂ z = 0 from the FOC with respect to z for an interior solution. It follows
that the overall sign is just equal to the sign of ∂ Π (·)/∂ℓL, which is equal to:

∂ Π (·)
∂ℓL

= −pℓ
∂θ ∗

L (ẑ)
∂ℓL

(Rθ
∗
L (ẑ)− (1− k)r2) > 0. (29)

It follows that profits increase in ℓL, as desired. □

Lemma 5. There exists a positive and finite value of the variable cost parameter, ĉ, such that ẑ(0) = ℓ̂(0).

Proof. The proof of Lemma 5 builds on the previous lemmas. From Proposition 3, ẑ decreases in
ℓL and in c. Moreover, ẑ(ℓL,c)→ 0 as c → ∞ for any ℓL. Thus, there exists a positive and finite value
of the variable cost parameter, ĉ, such that ẑ(0) = ℓ̂(0), where ℓ̂ is defined in Equation (8). □

Based on the Lemmas 3-5, we can prove the result in the proposition. For the bank, engaging
in risk management is optimal, as long as its expected profits in the event of the negative shock
(i.e., when ℓ = ℓL and z > 0, net of the fixed cost F , are higher than the expected profits in the
absence of risk management, i.e., if Π(ẑ(ℓL)|ℓL)−Π(0|ℓL)≥ 0. Since the part of the expected profits
without the negative shock to the interim asset value is not affected by z in Equation (6), the above
comparison boils down to:

pℓ
∫

θ ∗
L (0)

θ ∗
L (z)

[Rθ − (1− k)r2]dθ − cz2

2
≥ F . (30)
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We continue by deriving a sufficient condition for Inequality (30) to be violated. Recall that
θ ∗

L (0) = θ ≈ 1 for ℓL < ℓ̂(0), so the upper bound of the integral in Inequality (30) can be replaced
by 1 for all ℓL < ℓ̂(0).

Take c > ĉ and ℓL = 0, then ẑ(0) < ℓ̂(0) from Lemma 5 and Inequality (30) is violated for any
F ≥ 0. From Lemma 3, we know that θ ∗(ẑ(ℓL),ℓL) decreases in ℓL. From Lemma 4, we know
that bank profits are increasing in ℓL. Thus, for c > ĉ there exists a strictly positive cutoff value
ℓ̃L(F) ∈ (0, ℓ̂(0)) with associated optimal amount of risk management effort ẑ(ℓ̃L(F)) that solves
(30) with equality. The result in Proposition 4 follows.

A.4 Proof of Corollary 1

The proof is straightforward. From the condition ℓ= ℓL > ℓ̃L(F), we can obtain a cutoff F̂ as simply
the inverse function of ℓ̃L(F). Since the LHS in (30) increases with ℓL, it follows immediately that
F̂ increases in ℓL. This completes the proof. □

A.5 Proof of Proposition 5

First, we define the threshold level of the fixed cost F̂ as:

F̂ ≡ pℓ
∫ 1

θ ∗
L (z∗)

[Rθ − (1− k)r2]dθ − c
(z∗)2

2
,

where z∗(ℓL,c;k) solves Equation (7). Taking the derivative with respect to bank capital gives:

dF̂
dk

= −pℓ

∂θ ∗
L

∂k︸︷︷︸
<0

+
∂θ ∗

L

∂ z︸︷︷︸
<0

dz∗

dk︸︷︷︸
<0

 [Rθ
∗
L − (1− k)r2]+ pℓ

∫ 1

θ ∗
L

r2dθ − cz
dz∗

dk︸︷︷︸
<0

.

The expression above can be rearranged as follows:

dF̂
dk

= −pℓ
∂θ ∗

L

∂k
[Rθ

∗
L − (1− k)r2]+

dz∗

dk

−pℓ
∂θ ∗

L

∂ z
[Rθ

∗
L − (1− k)r2]− cz︸ ︷︷ ︸
FOCz

+ pℓ
∫ 1

θ ∗
L

r2dθ .

The first term is positive because ∂θ ∗
L /∂k < 0, as is the third term. The second term is instead zero

because the term in brackets is the same as the first-order condition for z as given in (7). It follows
that dF̂(ℓL,c;k)/dk > 0 as desired, and the proposition follows.
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A.6 Proof of Proposition 6

The existence proof is analogous to that of Proposition 1. We derive the thresholds for a generic
ℓ, knowing that it takes one of two values depending on the realization of the shock. The lower
dominance region is structurally the same as in the baseline model, as it is computed under the
assumption that no one runs. However, we now have to average over deposit rates:

θ σ ≡ 1− k
R

[σrI
2 +(1−σ)rU

2 ] =
1− k

R
r2,σ .

For any θ > θ σ , it is useful to distinguish between different levels of deposit insurance coverage
σ as follows:

Case (i): High level of DI coverage, 1 ≥ σ ≥ rU
2

1−k
ℓ −1

(rU
2 −1) 1−k

ℓ

⇔ ℓ≥ ℓ̌σ (k)

Case (ii): Intermediate level of DI coverage,
1− ℓ/(1− k) ≤ σ < rU

2

1−k
ℓ −1

(rU
2 −1) 1−k

ℓ

⇔ (1−σ)(1− k) ≤ ℓ < ℓ̌σ (k)

Case (iii): Low level of DI coverage, 0 ≤ σ < 1− ℓ/(1− k) ⇔ ℓ≤ (1−σ)(1− k).

The equilibrium run threshold takes a different functional form for each case, and we consider the
three cases in turn. We also formally derive the threshold ℓ̌σ .

For low levels of deposit insurance coverage, i.e. if 0 ≤ σ < 1− ℓ/(1− k), the bank may become
illiquid at time 1 if a large fraction of uninsured depositors decide to withdraw, leading to rationing
at the interim date as in our baseline model. Given a proportion n of uninsured depositors
running, the bank becomes insolvent whenever n > n̂σ (θ ), which corresponds to the solution to
the following equation:

Rθ

(
1− n (1− k) (1−σ)

ℓ

)
− (1−n) (1− k) (1−σ) rU

2 − (1− k)σrI
2 = 0, (31)

which gives:

n̂σ (θ ) =
Rθ − (1− k) (1−σ)rU

2 −σ(1− k)rI
2

Rθ
(1−k)(1−σ)

ℓ − (1− k) (1−σ) rU
2

.

It is easy to see that (31) decreases with n:

−Rθ
(1− k) (1−σ)

ℓ
+(1− k) (1−σ) rU

2 < 0

⇐⇒ (1− k) (1−σ)

ℓ

[
−Rθ + ℓrU

2
]
< 0,

since ℓ < (1− k) and θ > θ σ , as we are now considering the intermediate region where θ ∈
(
θ σ ,θ

)
.
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We can derive the indifference condition of uninsured depositors as follows:

∫ n̂σ (θ )

0
rU

2 dn =
∫ nσ

0
1dn+

∫ 1

nσ

ℓ

(1− k) (1−σ)n
dn,

where the liquidation needs are insufficient to meet withdrawals by uninsured depositors if n >

nσ ≡ ℓ/((1− k)(1−σ)) > n. Note that nσ ≤ 1 if and only if 0 ≤ σ ≤ 1− ℓ/(1− k), which describes
the parameter condition for Case (iii), where the level of deposit insurance coverage is low.

Defining ασ ,r ≡
∫ n

0 1dn+
∫ 1

n
ℓ

(1−k)(1−σ)n dn and following the same steps as in the baseline model,
we obtain:

rU
2 n̂σ (θ ) = ασ ,r ⇔ θ

∗
σ ,r ≡ θ σ

rU
2 − rU

2 (1−σ)
r2,σ

ασ ,r

rU
2 − (1−k)(1−σ)

ℓ ασ ,r

. (32)

Recognising the the first term is the fundamental run threshold, we can immediately see that
θ ∗

σ ,r is above it since:

rU
2 − rU

2 (1−σ)
r2,σ

ασ ,r

rU
2 − (1−k)(1−σ)

ℓ ασ ,r

> 1,

given that rU
2 /r2,σ < (1− k)/ℓ for σ ≤ 1− ℓ/(1− k), meaning that Case (iii) features panic runs as

in our baseline model.

Next, we move to Case (ii), where the level of deposit insurance coverage is in the intermediate
range. The lower bound of the intermediate range follows from nσ ≥ 1, which implies that the bank
is never illiquid at time 1. In other words, there is no rationing at the interim date. We continue
by deriving the equilibrium run threshold for Case (ii) and, thereafter, the upper bound of the
intermediate range, which demarks the point when there are only fundamental and no panic runs.

For Case (ii) the indifference condition of uninsured depositors is:

∫ n̂σ (θ )

0
rU

2 dθ = 1,

since nσ > 1. Defining ασ ,nr ≡ 1 and following the same steps as before, we obtain:

rU
2 n̂σ (θ ) = ασ ,nr ⇔ θ

∗
σ ,nr ≡ θ σ

rU
2 − rU

2 (1−σ)
r2,σ

ασ ,nr

rU
2 − (1−k)(1−σ)

ℓ ασ ,nr

.
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Also Case (ii) features panic runs despite the absence of rationing at time 1, since:

rU
2 − rU

2 (1−σ)
r2,σ

rU
2 − (1−k)(1−σ)

ℓ

> 1,

which holds if and only if the level of deposit insurance coverage is below the upper bound of the
intermediate range, or equivalenly, if the interim asset value falls below ℓ̌:

σ < rU
2

1−k
ℓ −1(

rU
2 − rI

2

) 1−k
ℓ

⇔ ℓ < ℓ̌σ (k) ≡
(
(1−σ)+σ

rI
2

rU
2

)
(1− k) =

(
1−σ +

σ

rU
2

)
(1− k), (33)

where we used the result that rI
2 = 1. This is the case because the run threshold increases with rI

2

and bank profits if no run occurs decreases in it as well. Therefore, it is optimal for the bank is to
choose the lowest possible level of rI

2. This combined with the fact that depositors receive 1 at time
1 when a run occurs implies that, with ρD = 1, the lowest possible level is rI

2 = 1. An aspect that
we will revisit in Section 6.1.

Finally, we move on to Case (i), where the level of deposit insurance coverage is in the the upper
range such that Inequality (33) holds. Importantly, by rearranging σ ≥

(1−k
ℓ −1

)
/
((

rU
2 −1

) 1−k
ℓ

)
and expressing it as a function of ℓ, we obtain the cutoff ℓ̌ defined in the proposition, which
completes the characterization of the run thresholds. In this range, the indifference condition does
not apply for uninsured depositors, since rU

2 ≥ 1, and they optimally decide to run if and only if
θ < θ σ . To see this, observe that:

n̂σ (θ ) |ℓ=ℓ̌ =
Rθ − (1− k) (1−σ)rU

2 −σ(1− k)rI
2

RθrU
2

1−σ

r2,σ
− (1− k) (1−σ) rU

2
=

r2,σ

(1−σ)rU
2

and: ∫ n̂σ |ℓ=ℓ̌(θ )

0
rU

2 dθ =
r2,σ

1−σ
> 1.

To complete the proof we compute ∂θ ∗
σ /∂σ , ∂θ ∗

σ /∂ℓ, ∂ 2θ ∗
σ /∂ℓ2, ∂ 2θ ∗

σ /∂ℓ∂σ , ∂θ ∗
σ /∂ rI

2 and
∂θ ∗

σ /∂ rU
2 . Differentiating equation (32) with respect to σ , we obtain:

∂θ ∗
σ

∂σ
=

(1− k)
(
rI

2 − rU
2

)
R

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+
(1− k) r2,σ

R

− ∂ασ

∂σ

(1−σ)rU
2

r2,σ
−ασ

−rU
2 r2,σ−rU

2 (1−σ)(rI
2−rU

2 )
r2

2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

−(1− k) r2,σ

R

(
rU

2 − rU
2 (1−σ)ασ

r2,σ

)(
− ∂ασ

∂σ

(1−k)(1−σ)
ℓ +ασ

1−k
ℓ

)
(

rU
2 − (1−k)(1−σ)

ℓ ασ

)2 < 0,
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where ασ = 1 and ∂ασ

∂σ
= 0 in Case (ii) and ∂ασ

∂σ
=

∫ 1
n

ℓ

(1−k)(1−σ)2n
dn > 0 and ασ − ∂ασ

∂σ
(1−σ) =∫ nσ

0 dn+
∫ 1

nσ

ℓ
(1−k)(1−σ)n dn−

∫ 1
nσ

ℓ
(1−k)(1−σ)n dn =

∫ nσ

0 dn > 0 in Case (ii).

Next, taking the derivative with respect to ℓ we obtain:

∂θ ∗
σ

∂ℓ
=

(1− k) rU
2

R
− ∂ασ

∂ℓ (1−σ)

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

< 0,

where ασ = 1 and ∂ασ

∂ℓ = 0 in Case (ii) and ∂ασ

∂ℓ =
∫ 1

nσ

1
(1−k)(1−σ)n dn > 0 and − ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ +

ασ
(1−k)(1−σ)

ℓ2 = (1−k)(1−σ)
ℓ2

(
−ℓ ∂ασ

∂ℓ +ασ

)
= (1−k)(1−σ)

ℓ

∫ nσ

0 dn > 0 in Case (ii).

The second derivative with respect to ℓ can be derived as:

∂ 2θ ∗
σ

∂ℓ2 =
(1− k) rU

2
R

(1−σ)(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2 ·

·

{
−∂ 2ασ

∂ℓ2

(
rU

2 − (1− k) (1−σ)

ℓ
ασ

)
−
(

∂ασ

∂ℓ

)2 (1− k) (1−σ)

ℓ
+

∂ασ

∂ℓ

(1− k) (1−σ)

ℓ2 ασ

}

−∂θ ∗
σ

∂ℓ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ 2ασ

∂ℓ2
(1−k)(1−σ)

ℓ − ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ2 −2ασ
(1−k)(1−σ)

ℓ3 + ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ2

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ
∗
σ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ +ασ
(1−k)(1−σ)

ℓ2(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2
(1− k) (1−σ)

ℓ2 ασ > 0.

Note that ∂ 2ασ

∂ℓ2 = 0 in Case (ii) and ∂ 2ασ

∂ℓ2 =− ∂nσ

∂ℓ
(1−k)(1−σ)
(1−k)(1−σ)ℓ

=−1
ℓ

1
(1−k)(1−σ)

< 0 in Case (ii). The terms
in the second line (curly bracket) sum up to a positive for Case (iii) and they are zero for Case (ii).
The third, forth and fifth lines are positive.

Next, we derive the cross-partial as:

∂θ ∗
σ

∂ℓ∂σ
=

(1− k) rU
2

R
− ∂ 2ασ

∂ℓ∂σ
(1−σ)+ ∂ασ

∂ℓ

rU
2 − (1−k)(1−σ)

ℓ ασ

+
(1− k) rU

2
R

− ∂ασ

∂ℓ (1−σ)
(

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ −ασ
(1−k)

ℓ

)
(

rU
2 − (1−k)(1−σ)

ℓ ασ

)2

−∂θ ∗
σ

∂ℓ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ 2ασ

∂ℓ∂σ

(1−k)(1−σ)
ℓ − ∂ασ

∂ℓ
1−k
ℓ − 1−k

ℓ2 ασ + (1−k)(1−σ)
ℓ2

∂ασ

∂σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ
∗
σ

(
+ ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

)2

(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2 > 0,

where again ∂ 2ασ

∂ℓ∂σ
= 0 in Case (ii) and ∂ 2ασ

∂ℓ∂σ
= − ∂nσ

∂ℓ / (1−σ) +
∫ 1

nσ

1
(1−k)(1−σ)2n

dn = − 1
(1−k)(1−σ)2 +
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∫ 1
nσ

1
(1−k)(1−σ)2n

dn< 0 in Case (iii). Recall that ασ − ∂ασ

∂σ
(1−σ) =

∫ nσ

0 dn> 0 and also (1−k)(1−σ)
ℓ2

(
−ℓ ∂ασ

∂ℓ +ασ

)
=

(1−k)(1−σ)
ℓ

∫ nσ

0 dn > 0, as well as ℓ ∂ 2ασ

∂ℓ∂σ
+ ∂ασ

∂σ
< 0. Therefore, all terms are positive in Case (iii), while

the second, third and forth terms are positive in Case (iii), and the other terms are zero.

Finally, taking the derivative with respect to rI
2 and rU

2 , we obtain:

∂θ ∗
σ

∂ rI
2

=
∂θ σ

∂ rI
2

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ σ

rU
2 (1−σ)ασ

r2
2,σ

σ

rU
2 − (1−k)(1−σ)

ℓ ασ

> 0

∂θ ∗
σ

∂ rU
2

=
∂θ σ

∂ rU
2

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ σ

1− 1−σ

r2,σ
ασ +

rU
2 (1−σ)2

ασ

r2
2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ σ

rU
2 − rU

2 (1−σ)ασ

r2,σ(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2 ,

where the last derivative has an ambiguous sign as in the baseline model. This completes the proof
of Proposition 6.

A.7 Proof of Lemma 6

Lemma 6. Positive profits. The bank only makes a positive profit if no run occurs.

Proof: Suppose there is a panic run, i.e. θ < θ ∗, then the bank obtains a positive profit for all
θ > θ̃σ , where θ̃σ follows from solvency for n = 1, i.e. in the event of a panic run:

Rθ

(
1− (1− k) (1−σ)

ℓ

)
− (1− k)σrI

2 = 0 ⇔ θ̃σ ≡ 1− k
R

σrI
2

1− (1−k)(1−σ)
ℓ

. (34)

We can show that θ ∗ < θ̃σ ,∀ℓ < 1− k and rU
2 ≥ rI

2. Moreover, limℓ→1−k θ ∗ = limℓ→1−k θ̃σ = θ σ if
rU

2 = rI
2, with limℓ→1−k θ̃σ /θ ∗ > 1, which leads to a contradiction since it is not optimal to run if

θ > θ̃σ . This concludes the proof. □

A.8 Proof of Proposition 7

To analyze risk management incentives, we differentiate Πσ (z;ℓL,ℓH) with respect to z, again
ignoring the fixed cost, to compute the level of risk management that maximizes bank profits. The
first-order condition is:

dΠσ (z;ℓL,ℓH)

dz
= pℓ[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]

(
−dθ ∗

L

dz

)
− cz = 0. (35)

As in equation (7), the first term is the marginal benefit of risk management and the second term
is the marginal cost. However, the solution to (35) is now a function of σ and we denote it with ẑσ .
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In Proposition 7 we focus on the model with panic runs, i.e. ℓ < ℓ̌σ . Differentiating the FOC
with respect to ℓL and σ gives:

d2Πσ

dzdℓL
= −pℓ

(
d2θ ∗

L

dzdℓL

)
[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]− pℓ

dθ ∗
L

dz
dθ ∗

L

dℓL
R < 0

d2Πσ

dzdσ
= −pℓ

(
d2θ ∗

L

dzdσ

)
[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]− pℓ

dθ ∗
L

dz
[R

dθ ∗
L

dσ
− (1− k)(rI

2 − rU
2 )] < 0,

where dθ ∗
L /dℓ= dθ ∗

L /dz < 0, d2θ ∗
L /dℓdz > 0, dθ ∗

L /dσ < 0, d2θ ∗
L /dℓdσ > 0 and:

R
∂θ ∗

L

∂σ
− (1− k)

(
rI

2 − rU
2
)

< 0,

which together with d2Πσ /dz2 < 0 leads to the results in Proposition 7. This concludes the
proof.

A.9 Proof of Proposition 8

The first part of this proof discusses the existence of risk management failures, while the second
part analyzes the role of DI coverage.

We follow the argument of the proof of Proposition 4. Lemmas 3 and 4 continue to hold with
minor modifications. Lemma 5 needs to be adjusted as follows.

Denote by ℓ̂σ (F) the interim asset value ℓL such that bank profits in the event of a negative
shock are equal to the cost of setting up risk management operations, i.e., ℓ̂σ (F) solves:

pℓ
∫ 1

θ ∗
L,σ (ℓ̂σ (F))

[Rθ − (1− k)r2]dθ = F . (36)

Recall that in defining ℓ̂σ (F) we are assuming the bank does no risk management, so that z = 0.
We also assume that the variable cost parameter c, is above a threshold ĉσ , which we define below
such that ẑσ (0, ĉσ ) = ℓ̂σ , where ℓ̂σ is defined in Equation (36).

Lemma 7. There exists a positive and finite value of the variable cost parameter, ĉσ , such that ẑσ (0, ĉ) =

ℓ̂σ (0).

Proof. The proof of Lemma 7 replicates the proof of Lemma 5. □

Note that θ ∗
L,σ (0) = θ ≈ 1 for ℓL < ℓ̂σ (0), so the upper bound in the integral of the inequality

describing the differential payoff from setting up risk management operations,

pℓ
∫

θ ∗
L,σ (0)

θ ∗
L,σ (z)

[Rθ − (1− k)r2,σ ]dθ − cz2

2
≥ F , (37)
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can be replaced by 1 for all ℓL < ℓ̂σ (0), as in the proof of Proposition 4.

Take c > ĉσ and ℓL = 0, then ẑσ (0,c) < ℓ̂σ (0) from Lemma 5 and Inequality (30) is violated for
any F ≥ 0. Since θ ∗

σ (ẑσ (ℓL),ℓL) decreases with ℓL, bank profits are increasing in ℓL. Thus, for c > ĉσ

there exists a strictly positive cutoff value ℓ̃L(F) ∈ (0, ℓ̂σ (0)) with associated optimal amount of
risk management effort ẑσ (ℓ̃L(F),c) that solves (37) with equality. The first result in Proposition 8
follows.

Next, we study the role of DI coverage. Denote F̂σ as in the proof of Proposition 5, as the
solution to:

F = pℓ
∫ 1

θ ∗
L,σ (z∗σ )

[Rθ − (1− k)r2]dθ − c
(z∗σ )

2

2
, (38)

where z∗σ solves the FOCz = 0, as defined in Equation (35). Taking the derivative of the RHS of
Equation (38) with respect to σ , we obtain:

∂ F̂σ

∂σ
= −pℓ

∂θ ∗
L,σ (z

∗
σ )

∂σ︸ ︷︷ ︸
<0

+
∂θ ∗

L,σ (z
∗
σ )

∂ z︸ ︷︷ ︸
<0

dẑσ

dσ︸︷︷︸
<0

 [Rθ
∗− (1− k) r2]

−pℓ
∫ 1

θ ∗
L,σ (z∗σ )

(1− k)
(
rI

2 − rU
2
)︸ ︷︷ ︸

<0

dθ − cz∗σ
dẑσ

dσ︸︷︷︸
<0

,

which can be rearranged as follows:

∂ F̂σ

∂σ
= −pℓ

∂θ ∗
L,σ (z

∗
σ )

∂σ
[Rθ

∗− (1− k) r2]+ pℓ
∫ 1

θ ∗
L,σ (z∗σ )

(1− k)
(
rI

2 − rU
2
)︸ ︷︷ ︸

<0

dθ

+pℓ
dẑσ

dσ

−
∂θ ∗

L,σ (z
∗
σ )

∂ z
[Rθ

∗− (1− k) r2]− cz∗σ︸ ︷︷ ︸
FOCz=0

> 0,

since ∂θ ∗
L,σ (z

∗
σ )/∂σ < 0 and the second term is zero as it is just the FOC with respect to z. Therefore,

dF̂σ /dσ > 0 follows. This concludes the proof of Proposition 8.
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A.10 Proof of Lemma 1

The bank chooses r2 so as to maximize its expected profits as given in (4) subject to the participation
constraint in Condition (11). Differentiating (4) with respect to r2, we obtain the following FOC:

FOC = −pℓ
∫ 1

θ ∗
L

(1− k)dθ − pℓ
∂θ ∗

L

∂ r2
[Rθ

∗
L − (1− k) r2]

− (1− pℓ)
∫ 1

θ ∗
H

(1− k)dθ +(1− pℓ)
∂θ ∗

H

∂ r2
[Rθ

∗
H − (1− k) r2] = 0. (39)

The equilibrium is r∗2 = max
{

rΠ
2 ,rV

2

}
, where rΠ

2 is the solution to (39), while rV
2 is the solution to

(11) holding with equality.

We start with rΠ
2 and compute SOC ≡ ∂FOC/∂ r2 by differentiating (39) with respect to r2. Hence,

we obtain:

SOC = +pℓ (1− k)
∂θ ∗

L

∂ r2
− pℓ

∂ 2θ ∗
L

∂ r2
2
[Rθ

∗
L − (1− k) r2]− pℓR

(
∂θ ∗

L

∂ r2

)2

+ pℓ (1− k)
∂θ ∗

L

∂ r2
+(1− pℓ) (1− k)

∂θ ∗
H

∂ r2

−(1− pℓ)
∂ 2θ ∗

H

∂ r2
2
[Rθ

∗
H − (1− k) r2]− (1− pℓ)R

(
∂θ ∗

H

∂ r2

)2

+(1− pℓ) (1− k)
∂θ ∗

H

∂ r2
< 0,

because ∂θ ∗
i /∂ r2 < 0 and ∂ 2θ ∗

i /∂ r2
2 > 0. The former derivative was derived in Proposition 2 and

can be rearranged as 1−k
R

r2−α

r2−α
(1−k)

L

+θ
1

r2−α
(1−k)

L

−θ ∗
i

1
r2−α

(1−k)
L

. This must be negative as otherwise the

FOC will be negative and so rΠ
2 cannot be a solution. The latter derivative is equal to:

∂ 2θ ∗
i

∂ r2
2
=

1− k
R

−α +α
(1−k)

L(
r2−α

(1−k)
L

)2 +
(1− k)

R
1

r2−α
(1−k)

L

−θ
1

r2−α
(1−k)

L

− ∂θ ∗
i

∂ r2

1

r2−α
(1−k)

L

+θ
∗
i

1

r2−α
(1−k)

L

> 0.

for i = {L,H}. Given SOC < 0, using the implicit function theorem, the sign of drΠ
2 /dℓL is equal to

the sign of ∂FOC/∂ℓL, which equals:

pℓ
∂θ ∗

L

∂ℓL
(1− k)− pℓ

∂ 2θ ∗
L

∂ r2∂ℓL
[Rθ

∗
L − (1− k) r2]− pℓ

∂θ ∗
L

∂ r2
R

∂θ ∗
L

∂ℓL
< 0,

since ∂θ ∗
L /∂ℓL < 0, ∂ 2θ ∗

L /∂ r2∂ℓL > 0 and ∂θ ∗
L /∂ r2 < 0, which is a necessary condition for r∗2 = rΠ

2 .
Thus, dr∗2/dℓL < 0 if r2 = rΠ

2 .

Next, consider rV
2 . The effect of a change in ℓL on rV

2 can be computed using the IFT:

drV
2

dℓL
= −∂V /∂ℓL

∂V /∂ r2
.
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The numerator is always positive; differentiating (11) with respect to ℓL gives:

pℓ
∫

θ ∗
L

0

1
1− k

dθ − ∂θ ∗

∂ℓL

(
r2 −

ℓL + z
1− k

)
> 0.

To sign the denominator, we consider separately the case in which ∂θ ∗/∂ r2 < 0 and when
∂θ ∗/∂ r2 > 0. In the former case, we can immediatelly see that if r2 increases V increases due
to both an increase in the repayment if no run occurs and because the run thresholds decreases
with r2. When ∂θ ∗/∂ r2 > 0, it is less straightforward as the increase in the run thresholds decreases
the expected payoffs of depositors, which constitutes an opposing effect.

We, next, prove that ∂θ ∗/∂ r2 > 0 leads to a contradiction and can, thus, be excluded. Note
first that ∂θ ∗/∂ r2 > 0 is incompatible with a slack depositor participation constraint. To see this,
observe that if the constraint were slack, then the bank would want to reduce r2 in order to increase
its profits, and would do so until the participation constraint becomes binding, i.e., V = ρD. Next,
along the binding participation constraint, if r2 is chosen such that ∂θ ∗/∂ r2 > 0, then it must be
that depositor expected payoffs are increasing in r2: dV /dr2 > 0. This is the case because otherwise
the bank would instead prefer to reduce r2 instead, since that would increase its profits, and
would make depositors better off, which would be inconsistent with saying that r2 has been chosen
optimally. We arrive at a contradiction, because the depositor participation constraint cannot be
slack. A similar argument can be made for changes in ℓH . The result in Lemma 1 follows.

A.11 Proof of Lemma 2

To study the role of the indirect effect via adjustments in the repayment of depositors, we study
the bank’s problem. The bank’s profits are given by:

max
r2

pℓ
∫ 1

θ ∗
L (r2)

(Rθ − (1− k) r2)dθ +(1− pℓ)
∫ 1

θ ∗
H (r2)

(Rθ − (1− k) r2)dθ − kρE s.t. V (r2,ℓL,ℓH) ≥ ρD,

where we introduce a modified notation to highlight the dependence of the run thresholds on the
repayment to depositors, i.e., θ ∗

L,H(r2). Next, assuming that the depositor participation constraint
binds, we can rewrite the bank’s problem as:

max
r2

pℓ
∫

θ ∗
L (r2)

0
(ℓL+z)dθ + pℓ

∫ 1

θ ∗
L (r2)

Rθdθ +(1− pℓ)
∫

θ ∗
H (r2)

0
ℓHdθ +(1− pℓ)

∫ 1

θ ∗
H (r2)

Rθdθ −(1− k)ρD−kρE .

Observe that the bank has one policy variable, r2, which affects the equilibrium run thresholds in
both states in a deterministic way. From the above, it is clear that the objective of the bank is to
select r2 so as to minimize the overall run probability.

For a given ℓL, we have an optimal solution r∗2 which pins down θ ∗
L and θ ∗

H . Now suppose ℓL
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decreases to some ℓ′L < ℓL. From Lemma 3 we know that ℓ′L +(z∗)′ < ℓL + z∗ and θ ∗
L (ℓ

′
L +(z∗)′) >

θ ∗
L (ℓL+z∗) for a given r2. Now the depositors’ participation constraint would no longer be satisfied,

both because ℓL went down, but also because all things equal the run risk would increase as well.
So r2 needs to increase in order to satisfy depositors’ participation constraint.

Next, we argue that the fall in ℓL cannot lead to both θ ∗
L and θ ∗

H going down in equilibrium, after
the adjustment in r2. First, observe that the bank’s profits are unambiguously decreasing in the
level of fragility. Second, let r2(ℓ′L) be the level of deposit repayment chosen when ℓL falls to ℓ′L. If
both run thresholds were to go down when ℓL = ℓ′L and r2 = r2(ℓ′L), then it would be the case that
profits evaluated at the original ℓL and r2 = r2(ℓ′L) would be even higher. This means that it would
have been optimal for the bank to choose this level of deposit repayment even before the drop in
ℓL since depositors’ participation constraint was for sure satisfied with r2 = r2(ℓ′L). Since the bank
had chosen a lower one, it cannot be that r2(ℓ′L) is associated with a lower level of fragility in both
states. Given that θ ∗

H does not depend on ℓL and r2(ℓ′L)> r2(ℓL) from Lemma 1, it must be the case
that θ ∗

H(r2(ℓ′L))< θ ∗
H(r2(ℓL)) from Proposition 2. Therefore, we must also have that θ ∗

L (ℓ
′
L)> θ ∗

L (ℓL),
as stated in the lemma. Note that this argument holds taking into account the risk management
choice. This completes the proof.

A.12 Proof of Proposition 9

As in the proof of Proposition 4, it is optimal for the bank to engage in risk management as long
as it obtains a net gain in terms of expected profits from it in the event of a negative shock (i.e.,
when ℓ= ℓL). This is given by Inequality (30) in the proof of Proposition 4, which we restate here
for convenience:

pℓ
∫

θ ∗
L (0)

θ ∗
L (z)

[Rθ − (1− k) r2 (ℓL)]dθ − c
z2

2
≥ F . (40)

The two extremes of the integral only differ because of z. Let’s focus on the upperbound.

The run threshold θ ∗
L (0) converges to 1 when ℓL falls below some positive threshold ℓ̌L. Formally,

we show that ∃ ℓ̌L ∈ (0,1−k) such that θ ∗
L → θ ≈ 1 for ℓL → ℓ̌L > 0. To see this, it is useful to rewrite

the expression for θ ∗
L (0) as follows:

θ
∗
L (0) =

(1− k) r2

R

r2 (ℓL)− ℓL
1−k

(
1− ln

(
ℓL

1−k

))
r2 (ℓL)−

(
1− ln

(
ℓL

1−k

)) .

First, notice that for θ ∗
L to exist the following two conditions are necessary:

r2(ℓL)− ℓL/(1− k) (1− ln (ℓL/(1− k))) > r2(ℓL)− (1− ln (ℓL/(1− k))) (41)

r2(ℓL)− (1− ln (ℓL/(1− k))) > 0, (42)
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where the second inequality follows from depositor indifference. Both the numerator and the
denominator of θ ∗

L are monotonically decreasing in ℓL. Furthermore, the bank operates only with
non-negative profits, which imposes an upper bound on r2 (ℓL), i.e. r2 (ℓL)< R/(1−k) independent
on whether it is determined by (11) or (39).

As ℓL → 0, the left-hand-side of Inequality (41) goes to r2 < R/(1−k), while the right-hand side
is strictly negative for all ℓL < ˇ̌ℓL, where ˇ̌ℓL > 0 solves:

R/(1− k) = 1− ln
(

ˇ̌ℓL/(1− k)
)

.

Conversely, for ℓL → 1− k, both sides of Inequality (41) go to r2. Thus, by continuity and mono-
tonicity, ∃ ℓ̌L(0) > ˇ̌ℓL such that θ ∗

L (0) = 1 for all ℓL ∈ [0, ℓ̌L(0)].

When z > 0, the same argument can be used to show that the lower extreme of the integral in
condition (40), θ ∗

L (z), goes to the upperbound when ℓL is small. However, as θ ∗
L is decreasing in

z, so that θ ∗
L (z) < θ ∗

L (0), the value of ℓL for which θ ∗
L (z) → 1 is lower than ℓ̌ (0) and we denote it

as ℓ̌ (z). Therefore, if c → ∞, then ℓL + ẑ(ℓL) < ℓ̌L(0) for all ℓL ∈ [0, ℓ̌L(0)) and z∗ = 0. Analogous
to the proof of Proposition 4, we can define a č such that ẑ(0, č) = ℓ̌L(0). Then, for any c > č and
F > 0, there exists a sufficiently large negative shock to the interim asset value such that zero risk
management is optimal. This completes the proof.

A.13 Proof of Proposition 10

We assume that R is high enough to ensure that financial intermediation is profitable and the
participation constraint of the banker is always slack, Π ≥ 0. Since the participation constraint
of depositors binds, it pins down r∗2 for any level of bank capital k. That is, V (r∗2,k) = ρD for all
k < 1− ℓ. Multiplying the binding participation constraint by deposits (1− k) and inserting into
the bank’s expected profits yields the following reduced problem:

max
k

Π = pℓ

(∫
θ ∗

L

0
(ℓL + z)dθ +

∫ 1

θ ∗
L

Rθdθ

)
+(1− pℓ)

(∫
θ ∗

H

0
ℓHdθ +

∫ 1

θ ∗
H

Rθdθ

)
−(1− k)ρD − kρE − c

z2

2
−F1{z>0}.

Focusing on the interior solution ẑ > 0 and invoking the envelope theorem and dΠ/dz = 0, we have
the following first-order condition for bank capital:

dΠ
dk

= pℓ [Rθ
∗
L − (ℓL + z)]

(
−dθ ∗

L

dk

)
+(1− pℓ) [Rθ

∗
H − ℓH ]

(
−dθ ∗

H

dk

)
− (ρE −ρD) = 0. (43)
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Equation (43) shows the trade-off associated with more bank capital. The first two terms are the
endogenous expected marginal benefit of capital in terms of improving bank stability in both states
of the world. The last term is the marginal cost of capital because capital is assumed to be a more
expensive form of bank funding. Each of the first two terms are strictly positive, while the last
term converges to zero as ρE → ρD. Therefore, it is optimal for the bank to raise a strictly positive
amount of bank capital as long as ρE is not too much larger than ρD. This completes the proof.

A.14 Proof of Proposition 11

To see the effect of commitment on deposit rates, consider the participation constraint of investors,
given in Condition (11). Using the implicit function theorem, higher risk management reduces the
deposit rate, i.e. dr∗2

dz < 0. To see this, note that a greater amount of risk management and a higher
deposit rate increase the value of the deposit claim V :

∂V
dz

= pℓ

{∫
θ ∗

L

0

1
1− k

dθ +

[
r2 −

ℓL + z
1− k

](
−dθ ∗

L

dz

)}
> 0

∂V
dr2

= pℓ
∫ 1

θ ∗
L

dθ +(1− pℓ)
∫ 1

θ ∗
H

dθ +

[
r2 −

ℓL + z
1− k

](
−dθ ∗

L

dr2

)
+

[
r2 −

ℓH

1− k

](
−dθ ∗

H

dr2

)
,

because risk management reduces bank fragility upon a shock, dθ ∗
L /dz < 0. A higher deposit rate

directly increases the value of the deposit claim and has an indirect effect via bank fragility. A
sufficient condition for the value of the claim to increase in deposit rates, ∂V /dr2 > 0, is that a
higher deposit rate reduces fragility, which arises for a low equilibrium deposit rate r∗2 (Proposition
2). For example, a high enough return on investment R suffices for this to arise.

Similarly, a higher deposit rate directly reduces bank profits and has an indirect effect via
fragility:

∂ Π
∂ r2

= −(1− k) [pℓ(1−θ
∗
L )+ (1− pℓ)(1−θ

∗
H)]

−pℓ [Rθ
∗
L − (1− k)r2]

∂θ ∗
L

∂ r2
− (1− pℓ) [Rθ

∗
H − (1− k)r2]

∂θ ∗
H

∂ r2
.

If the value of the deposit claim increases in the deposit rate, then ∂ Π/∂ r2 < 0 must hold in
equilibrium. The intuition is as follows. If the participation constraint were to bind for a deposit
rate at which marginal profits still increase in the deposit rate, the bank would voluntarily pay
higher deposit rates (in order to benefit from the beneficial effect via lower fragility). Then, the
participation constraint would be slack and the equilibrium deposit rate pinned down by zero
marginal profits. Since we focus on parameters for which the participation constraint of investors
binds in equilibrium, it must be that higher deposit rates reduce expected bank profits, as was to
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be shown.

Equipped with these results, we can turn to the planner’s choice of risk management effort,
where ẑP is the equivalent of ẑ for the planner, and similarly for rP

2 . The first-order condition that
pins down ẑP is:

dΠ
dz

≡ ∂ Π
∂ z

+
∂ Π
∂ r2

dr2

dz
,

where dr2
dz comes from the binding participation constraint and ∂ Π

∂ z = 0 pins down ẑ for the bank.
Since ∂ Π

∂ r2

dr2
dz > 0, we must have ∂ Π

∂ z |z=ẑP < 0. By the concavity of Π in z, it immediately follows
that ẑP > ẑ. In words, when abstracting from the fixed cost,the planner chooses a higher risk
management than the bank, because the planner internalizes its benefit for reducing deposit rates.

Turning to risk management failures, we see that the planner’s commitment to future risk
management also has implications for whether the bank engages in any risk management in the
first place. The result is straightforward from the following considerations. The planner maximizes
welfare SW (z), while the bank maximizes Π(z). Therefore, it is immediate that SW (ẑp) ≥ SW (ẑ),
with the inequality strict whenever ẑp ̸= ẑ. Now, Π(z) = SW (z)−V (z). Since the participation
constraint binds throughout, we have that V (ẑp) = V (ẑ), which then implies that Π(ẑp) ≥ Π(ẑ),
with the inequality again strict whenever ẑp ̸= ẑ. This then implies that for any given ℓL, if the
differential in bank profits between hedging and not is exactly equal to zero when F = F̂ and the
bank chooses z = ẑ, they must be strictly positive when the planner chooses z = ẑp. Hence, F̂P > F̂ .
This completes the proof.

A.15 Proof of Proposition 12

We begin by analysing the alternative model of risk management and deriving the equilibrium
depositor run thresholds to obtain some preliminary results, focusing on the aspects that differ
from the main specification. First, consider the impact of risk management z on bank fragility. We
start from the bad state, ℓ = ℓL. There are now three cases for interim withdrawals. We consider
them in turn.

Case 1: n ≤ z/(1− k) ≡ n. When withdrawals are below n, no liquidation is needed to serve
withdrawals because the cash received from the risk management contract suffices. Thus, the bank
is liquid at t = 1 and stores the remainder, z− n(1− k), until time 2. The bank is solvent at t = 2

whenever:
Rθ + z−n(1− k) ≥ (1− k)(1−n)r2.

Note that the lower dominance bound is also different relative to the baseline model and now
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solves Rθ + z = (1− k)r2, so the equilibrium fundamental threshold changes to:

θ L,S ≡
(1− k)r2 − z

R
,

where A stands for the alternative modelling of risk management. We have the following ranking:
θ A < θ . Since θ ≥ θ A holds when establishing the bank failure threshold, the bank is always solvent
at t = 2. To see this, Rθ + z−n(1− k) ≥ (1− k)(1−n)r2 ⇔ r2 ≥ 1, which always holds.

Case 2: z/(1− k) < n ≤ nL,S ≡ (ℓL + z)/(1− k). For intermediate levels of withdrawals, the
bank is liquid at t = 1 and can meet all withdrawals, so depositors who withdraw early are repaid
in full. To ensure this, some liquidation is required, namely the fraction (1− k)(n− n)/ℓL of
investment. Thus, the bank is solvent at t = 2 if:

Rθ

(
1− (1− k)n− z

ℓL

)
≥ (1− k)(1−n)r2.

The insolvency threshold of withdrawals solves this condition with equality, so:

n̂L,S ≡
Rθ

(
1+ z

ℓL

)
− (1− k)r2

Rθ

(
1−k
ℓL

)
− (1− k)r2

.

We focus on parameters such that z∗ is low enough in order to ensure that n̂L,S ≤ 1.

Case 3: nA < n. Full liquidation occurs at t = 1 and withdrawing depositors receive a pro-rata
share of liquidation proceeds. Depositors who wait until t = 2 receive nothing.

For vanishing private noise, the usual Laplacian property holds, n ∼U [0,1]. Thus, a depositor’s
expected payoff from withdrawing early is:

αL,S =
∫ nL,S

0
dn+

∫ 1

nL<S

ℓL + z
(1− k)n

dn.

Thus, αL,S has the exact same functional form as α ; the argument ℓL is just replaced by ℓ+ z.

As in the baseline model, risk management effort z increases depositors’ expected payoff from
withdrawing. The effect is twofold. First, it increases the pro-rata share in the event the bank fails
at t = 1. Second, it makes bank failure at t = 1 less likely. It follows that ∂αL,S/∂ z > 0.

The equilibrium failure threshold again solves
∫ n̂A

0 r2dn = αA, so

θ
∗
L,A =

(1− k)r2

R
r2 −αA(

1+ z
ℓL

)
r2 − αA(1−k)

ℓL

.
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The characterization of the run threshold in the good state, i.e., ℓ = ℓH is simpler and follows
the same steps as in the baseline model, which we omit for brevity. The bank is illiquid at t = 1 if
withdrawals and swap payment exhaust the liquidation value of investment: (1− k)n+ z = ℓH , so

nH,S =
ℓH − z
1− k

< 1,

because ℓH < 1− k. Intuitively, a higher interest rate swap payment reduces the liquidity available
to depositors at the interim date, dnH,S

dz = − 1
1−k < 0.

For n ≤ nH,S, the bank continues until date 2 and fails due to insolvency if

n > n̂H,S ≡
Rθ

(
1− z

ℓH

)
− (1− k)r2

Rθ (1−k)
ℓH

− (1− k)r2

,

where the insolvency bound n̂H,S solves the insolvency condition:

Rθ

[
1− z+(1− k)n

ℓH

]
− (1− k)(1−n)r2 = 0.

Intuitively, a higher swap payment z at the interim triggers more partial liquidation of the asset, so
the bank is insolvent at the final date for a smaller proportion of withdrawals, dn̂H,S

dz < 0.

Using the insolvency condition, the lower dominance bound (n = 0) is

θ H,S =
(1− k)r2

R
(

1− z
ℓH

) =
r2

R
ℓH

nH,S
.

Using these bounds, we can define the following terms: αH,S ≡ ℓH−z
1−k

[
1− ln

(
ℓH−z
1−k

)]
= nH,S [1− ln (nH,S)],

so dαH,S
dnH,S

=− ln(nH,S)> 0. For future reference, we have dαH,S
dz = ∂αH,S

∂ z = 1
1−k ln

(
ℓH−z
1−k

)
= 1

1−k ln (nH,S)<

0 from the chain rule, where the first inequality arises from ∂αH,S
∂nS

= 0. In words, a higher swap
payment reduces the expected payoff from withdrawing, which tends to stabilize the bank.

The indifference condition r2n̂H,S ≡ αH,S. Rewriting yields the bank failure threshold:

θ
∗
H,S ≡ r2(1− k)

R
r2 −αH,S

r2

(
1− z

ℓH

)
− (1− k)αH,S

ℓH

= θ H,S
r2 −αH,S

r2 −αH,S
1−k
ℓH−z

> θ H,S, (44)

where the existence of panic runs arises from 1− k > ℓH − z.

As it would be useful later for the derivatives, it is algebraically convenient to re-express the
failure threshold in terms of nS and αS only:

θ
∗
H,S ≡

r2

R
ℓH

r2 −αH,S

r2nH,S −αH,S
.
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Next, we proceed to sign the effect of higher risk management on bank fragility. Let xL,S ≡ ℓL+z
1−k .

Then, we can again express the expected payoff from withdrawing early compactly as αL,S ≡
xL,S(1− ln(xL,S)). Using this expression for αL,S, we can express the failure threshold as:

θ
∗
L,S = θ

ℓL

ℓL + z
r2 − xL,S(1− ln(xL,S))

r2 − (1− ln(xL,S))
.

It is immediate that dθ ∗
L,S/dz < 0. The first factor is independent of risk management, the second

factor decreases in risk management, and the third factor has the same mathematical structure as
before, so dθ ∗

L,S/dxL,S < 0 and dxL,S/dz > 0 (see also Appendix A.1.3).

Consider now state H. Differentiating (44) with respect to z, we obtain:

dθ ∗
z,H

dz
=

(1− k) r2

R
(

1− z
ℓH

)2
1
ℓH

r2 −αz,H

r2 −αz,H
1−k
ℓH−z

+
(1− k) r2

R
(

1− z
ℓH

) −dαz,H
dz(

r2 −αz,H
1−k
ℓH−z

) − (1− k) r2

R
(

1− z
ℓH

) (r2 −αz,H)
[
−dαz,H

dz
1−k
ℓH−z −αz,H

1−k
(ℓH−z)2

]
(

r2 −αz,H
1−k
ℓH−z

)2 ,

which can be rearranged as follows:

dθ ∗
z,H

dz
=

θ ∗
z,H

ℓH − z
−

θ ∗
z,H ln

(
ℓH−z
1−k

)
(1− k)(r2 −αz,H)

+
θ ∗

z,H

ℓH − z
1

r2 −αz,H
1−k
ℓH−z

> 0,

since
dαz,H

dz
1− k
ℓH − z

+αz,H
1− k

(ℓH − z)2 =
1

ℓH − z
.

This completes the proof.

A.16 Proof of Proposition 13

Differentiating the second integral in Equation (12) with respect to z, we obtain the marginal costs
of risk management can be expressed as follows:

C′(z) ≡ (1− pℓ)
[
Rθ

∗
H,S

(
1− z

ℓH

)
− (1− k)r2

]dθ ∗
H,S

dz
+

1− pℓ
ℓH

∫ 1

θ ∗
H,S

Rθdθ > 0,

because the marginal profit at the failure threshold is positive (due to panic runs).
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It follows from the expression above that the cost of risk management is convex if:

C′′(z) ≡ (1− pℓ)R
(

dθ ∗
H,S

dz

)2(
1− z

ℓH

)
+(1− pℓ)[Rθ

∗
H,S(z)− (1− k)r2]

d2θ ∗
H,S

dz2

−2
1− pℓ
ℓH

Rθ
∗
H,S

dθ ∗
H,S

dz
> 0.

Note that d2θ ∗
H,S

dz2 ≥ 0 and ℓH−z
2

dθ ∗
H,S

dz ≥ θ ∗
H,S are sufficient for convexity (where the second sufficient

condition arises from combining the first and third term of the second derivative).

We can then express the derivative of θ ∗
H,S obtained in the proof of Proposition 12 as follows:

dθ ∗
z,H

dz
= θ

∗
z,H

 1
ℓH − z

−
ln
(
ℓH−z
1−k

)
(1− k)(r2 −αz,H)

+
1

ℓH − z
1

r2 −αz,H
1−k
ℓH−z


Denote the expression in the square bracket as Φ. Then, we can write the second derivative as
follows:

d2θ ∗
z,H

dz2 =
dθ ∗

z,H

dz
Φ+θ

∗
z,H

dΦ
dz

.

Hence, it follows immediately that d2θ ∗
z,H

dz2 > 0 if dΦ
dz ≥ 0.

Taking out the term 1
1−k from the expression for Φ, and substituting for nS, we can simplify this

term as follows:
Φ(nS) ≡

1
1− k

[
1
nS

− ln(nS)

r2 −αS
+

1
r2nS −αS

]
,

so dΦ
dz ≥ 0 whenever dΦ

dnS
≤ 0 (because dnS

dz = − 1
1−k < 0). Computing this derivative, we have:

dΦ
dnS

=
1

1− k

[
− 1

n2
S
− 1

nS(r2 −αS)
− ln(nS)

(r2 −αS)2
dαS

dnS
− 1
(r2nS −αS)2

(
r2 −

dαS

dnS

)]
< 0.

This (desired) sign arises for two reasons (and under a sufficient condition). First, consider the
fourth term and note that r2 − dαS

dnS
> 0 ⇔ r2 >− ln(nS) because r2 > 1− ln(nS) from the definition of

the failure threshold (a positive denominator). Thus, the fourth term has the desired sign.

Second, the third term has the opposing sign. Combining the first and the third term, a sufficient
condition for dΦ

dnS
< 0 is

− 1
n2

S
− ln(nS)

(r2 −αS)2
dαS

dnS
≤ 0 ⇔ n2

S ln(nS)
2 ≤ (r2 −αS)

2.

A sufficient condition for the latter inequality is r2 −αS ≥−nS ln(nS). Since r2 > 1− ln(nS) (positive
denominator of failure threshold) and −nS ln(nS) < nS(1− ln(nS)), a sufficient condition for the
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desired inequality is:

1− ln(nS)−nS(1− ln(nS))≥ nS(1− ln(nS))⇔ 1−nS ≥ nS.

Since z ≥ 0, a sufficient condition is ℓH ≤ (1− k)/2. This is quite restrictive, but we can then show
that in the numerical example that the desired result holds more broadly. Taken together, under
this condition, the failure threshold is convex in risk management effort.

Using Equation (A.16), we can rewrite the second sufficient condition as

r2 −αz,H

r2 − αz,H
nS

≥ nS ln(nS),

which always holds because the LHS is proportional to θ ∗
H,S and thus positive, while the RHS is

negative (because nS < 1). Finally, the convexity of the failure threshold arises from the sufficient
condition stated in the proposition (as proven above). This completes the proof.
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