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Abstract

We show how to speed up Sequential Monte Carlo (SMC) for Bayesian

inference in large data problems by data subsampling. SMC sequentially up-

dates a cloud of particles through a sequence of distributions, beginning with

a distribution that is easy to sample from such as the prior and ending with

the posterior distribution. Each update of the particle cloud consists of three

steps: reweighting, resampling, and moving. In the move step, each particle

is moved using a Markov kernel and this is typically the most computation-

ally expensive part, particularly when the dataset is large. It is crucial to

have an efficient move step to ensure particle diversity. Our article makes two

important contributions. First, in order to speed up the SMC computation,

we use an approximately unbiased and efficient annealed likelihood estimator

based on data subsampling. The subsampling approach is more memory effi-

cient than the corresponding full data SMC, which is an advantage for parallel

computation. Second, we use a Metropolis within Gibbs kernel with two con-

ditional updates. A Hamiltonian Monte Carlo update makes distant moves for

the model parameters, and a block pseudo-marginal proposal is used for the

particles corresponding to the auxiliary variables for the data subsampling.

We demonstrate the usefulness of the methodology for estimating three gen-

eralized linear models and a generalized additive model with large datasets.
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1 Introduction

The main problem of Bayesian inference is to estimate the expectation of a func-

tion of the unknown parameters with respect to their posterior distribution. This is

typically resolved by obtaining a simulation approximation of the expectation using

samples from the posterior distribution. Exact approaches such as Markov Chain

Monte Carlo (MCMC) (Brooks et al., 2011) methods have been the main methods

used for sampling from complex posterior distributions. Despite this, MCMC meth-

ods have some notable drawbacks and limitations. One drawback often overlooked

by practitioners when fitting complex models, is the failure to converge caused by

poorly mixing chains. While Hamiltonian Monte Carlo (Neal, 2011, HMC) is a rem-

edy in many cases, it can be notoriously difficult to tune. Limitations of MCMC

methods include the difficulties of assessing convergence, parallelizing the compu-

tation, and estimating the marginal likelihood efficiently from MCMC output, the

latter being useful for model selection (Kass and Raftery, 1995). Sequential Monte

Carlo (see Doucet et al., 2001 for an introductory overview) methods provide an al-

ternative exact simulation approach to MCMC methods and overcome some of their

drawbacks. Moreover, in contrast to MCMC methods, SMC can provide online up-

dates of the parameters as data is collected, which is particularly useful for dynamic

(time-varying parameters) models. SMC is also useful for static (non time-varying

parameters) models (Chopin, 2002; Del Moral et al., 2006), and can in such cases

more easily explore multimodal posterior distributions than MCMC.

Despite the advantages of SMC, it is remarkably less used than MCMC for static

models. One possible explanation is that, while amenable to computer paralleliza-

tion, it is still very computationally expensive and particularly so for large datasets.

Another obstacle caused by large datasets is that they prevent efficient computer

parallelization of SMC, as the full dataset needs to be available for each worker

which is infeasible as it consumes too much Random-Access Memory (RAM). We

propose an efficient data subsampling approach which significantly reduces both the

computational cost of the algorithm and the memory requirements when paralleliz-

ing: see Section 3.6 for a detailed explanation of the latter. Our approach utilizes the

methods previously developed for Subsampling MCMC (Quiroz et al., 2018a; Dang

et al., 2018) and places them within the SMC framework. See Quiroz et al. (2018c)

for an introductory text in Subsampling MCMC.

In a Bayesian context, SMC is a method to traverse a cloud of particles through

a sequence of distributions, with the initial distribution both easy to sample from

and to evaluate, while the final distribution is the posterior distribution. The cloud

of particles at step p is an estimate of the pth distribution in the sequence. The
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particles consist of the unknown parameters and any additional latent variables that

are part of the model. The evolution of the particle cloud consists of three steps:

reweighting, resampling and moving. Of these, the first two steps are common to all

SMC schemes and are straightforward. The move step is the most expensive and is

critical to ensure that the particle cloud is representative of the distribution it aims

to estimate.

To the best of our knowledge, data subsampling has not been explored in SMC

for static models. While Wang et al. (2019) term their algorithm Subsampling SMC,

their approach is distinct as they combine data annealing and likelihood annealing,

whereas we use data subsampling to estimate the likelihood. Specifically, we consider

a likelihood annealing approach in which we estimate the annealed likelihood effi-

ciently using an approximately unbiased estimator. Likelihood estimates for SMC in

a non-subsampling context have been used in Duan and Fulop (2015), who propose

to estimate the likelihood unbiasedly using a particle filter in a time series state space

model application. However, Duan and Fulop (2015) use a random walk MCMC ker-

nel for the move step of the model parameters, which is inefficient in high dimensions

and we now turn to this issue.

The literature has focused on accelerating SMC algorithms by designing efficient

MCMC kernels for the move step to achieve efficient particle diversity. The efficiency

concept here is the ability of the MCMC kernel to generate distant proposals which

have a high probability of being accepted, so as to move the particle efficiently using

as few iterations of the kernel as possible. Various approaches exist to achieve this.

For example, adaptive SMC adapts the tuning parameters of the kernel to improve

its efficiency (Jasra et al., 2011; Fearnhead and Taylor, 2013; Buchholz et al., 2018).

A different approach is explored in South et al. (2016), who use SMC with a flexible

independent proposal based on copulas models. Finally, the use of derivatives to

construct efficient proposals through the Metropolis Adjusted Langevin Algorithm

(Roberts and Stramer, 2002, MALA) have been explored (Sim et al., 2012; South

et al., 2017). It is now well-known that the MALA proposal is a special case of

the more general proposal utilizing Hamiltonian dynamics proposed in Duane et al.

(1987) (see Neal 2011; Betancourt 2017 for introductory overviews). Although South

et al. (2017) mention HMC in their introduction, they only consider MALA in their

paper and show how neural networks can be applied to adaptively choose its tuning

parameters. Daviet (2016) considers HMC proposals for particle diversity, however,

HMC is painfully slow for very large datasets and therefore this approach does not

scale well in the number of data observations.

We propose data subsampling to improve the computational efficiency and a HMC

type of kernel for efficient particle diversity, while leveraging on data subsampling
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in order to achieve scalability in the number of observations. As a by-product, data

subsampling lowers the memory requirements of the algorithm (see Section 3.6),

making it amenable for computer parallelism on very large datasets. Our framework

combines that of Duan and Fulop (2015) for carrying out SMC with an estimated

likelihood, Quiroz et al. (2018a) for estimating the likelihood and controlling the

error in the target density and Dang et al. (2018) for constructing efficient proposals

for high-dimensional targets in a subsampling context.

Our article is organized as follows. Section 2 reviews sequential Monte Carlo

for static models. Section 3 outlines our methodology, which scales SMC to large

datasets and high-dimensional models by combining efficient data subsampling and

Hamiltonian Monte Carlo to sample from an accurate approximate target density.

Section 4 applies our methodology in a variety of settings for both real and simulated

data and shows that it gives accurate estimates of both the posterior density and the

marginal likelihood. Section 5 concludes.

2 Sequential Monte Carlo

2.1 SMC for static Bayesian models

Denote the observed data y = (y>1 , . . . ,y
>
n )>, with yk ∈ Y ⊂ Rdy . Let θ be the

vector of unknown parameters, θ ∈ Θ ⊂ Rdθ , with p(θ) and p (y|θ) the prior and

likelihood. In Bayesian inference, the uncertainty about the unobserved θ is specified

by the posterior density π(θ), which by Bayes’ theorem is

π(θ) =
p(θ)p (y|θ)

p(y)
, where p (y) =

ˆ
Θ

p (y|θ) p (θ) dθ, (1)

is the marginal likelihood, also known as the evidence, and is often used for Bayesian

model selection.

The main problem in Bayesian inference is to estimate the posterior expectation

of a function of θ,

Eπ (ϕ(θ)) =

ˆ
Θ

ϕ (θ) π (θ) dθ. (2)

In simulation based inference, this is typically achieved by sampling from (1) and

computing (2) by Monte Carlo integration. A second problem is to compute the

marginal likelihood in (1). However, it is well known that standard Monte Carlo

integration is very inefficient for this task.

In a Bayesian context, SMC (Doucet et al., 2001) is a collection of methods that

can approximately sample from (1) and in addition provide an efficient estimator of
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the marginal likelihood. Their early use was for inference in dynamic systems (Gor-

don et al., 1993; Liu and Chen, 1998; Gilks and Berzuini, 2001), but more recently

their potential has been realized for static (non-dynamic) models (Chopin, 2002; Del

Moral et al., 2006), in which they generalize importance sampling approaches such

as Annealed Importance Sampling (Neal, 2001, AIS).

SMC specifies a sequence of P densities, connecting the density of the prior p(θ)

to the density of the posterior π(θ) in (1). The sequence is usually obtained either

through data annealing (Chopin, 2002), in which the data is introduced sequentially,

or temperature annealing (Neal, 2001), in which the likelihood is tempered p (y|θ)ap

with a0 = 0 < a1 < · · · < aP = 1. Our article considers the latter and we note

at the outset that we propose to estimate the tempered likelihood p (y|θ)ap by data

subsampling, see Section 3. The tempered posterior is

πp(θ) =
ηp(θ)

Zp
, where ηp(θ) = p (y|θ)ap p(θ) and Zp =

ˆ
Θ

p (y|θ)ap p(θ)dθ. (3)

SMC proceeds by sampling a set of M particles from the prior p(θ) and tra-

verses them through the sequence of densities πp(θ), p = 1, . . . , P by, for each p, (i)

reweighting, (ii) resampling and (iii) moving the particles. At the final p = P , the

particles are a (weighted) sample from π(θ). We now discuss this in more detail.

The initial particle cloud
{
θ

(0)
1:M ,W

(0)
1:M

}
is obtained by generating the

{
θ

(0)
1:M

}

from p (θ), and giving them equal weight, i.e., W
(0)
1:M = 1/M . The weighted particles{

θ
(p−1)
1:M ,W

(p−1)
1:M

}
at the (p− 1)st stage, p = 1, . . . , P , are (weighted) samples from

πp−1 (θ). At the pth stage, the transition from πp−1 (θ) to πp (θ) is obtained by the

reweighting step,

w
(p)
i = W

(p−1)
i

ηp

(
θ

(p−1)
i

)

ηp−1

(
θ

(p−1)
i

) = W
(p−1)
i p

(
y|θ(p−1)

i

)ap−ap−1

,

and then normalizing W
(p)
i = w

(p)
i /

∑M
i′=1 w

(p)
i′ . The reweighting will, when p in-

creases, assign vanishingly smaller weights to particles which are unlikely under the

tempered likelihood, causing the so-called particle degeneracy problem, in which the

weight mass is concentrated only on a small fraction of the particles, causing a small

effective sample size (explained in Section 2.2). This is resolved by the resampling

step, in which the particles θ
(p)
1:M are sampled with a probability equal to their nor-

malized weights W
(p)
1:M , and subsequently setting W

(p)
1:M = 1/M . While this ensures

that the particles with small weights are eliminated, it causes so-called particle deple-

tion because the particles with large weights may duplicate. This is resolved by the
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move step, in which a πp-invariant Markov kernel Kp is applied to move each of the

particles R steps. Notice that since a particle at stage p is approximately distributed

as πp(θ) and Kp is πp-invariant, no burn-in period is required as in MCMC meth-

ods, where often a very large number of burn-in iterations are required. Finally, we

note that the algorithm is easy to parallelize with respect to the particle dimension,

because the computations required for each particle do not depend on that of the

other particles. Thus, provided that p(y|θ) can be computed at each worker without

storage issues, it is straightforward to implement the parallel version.

Del Moral et al. (2006) provide consistency results and central limit theorems for

estimating (2) based on the SMC output.

2.2 Statistical efficiency of SMC

The statistical efficiency of the pth stage of the SMC reweighting part is measured

through the Effective Sample Size (ESS) defined as (for example Liu, 2001)

ESSp =

(
M∑

i=1

(
W

(p)
i

)2
)−1

.

The ESS varies between 1 and M , where a low value of ESS indicates that the weights

are concentrated only on a few particles. A common problem in SMC is the choice

of tempering sequence {ap, p = 1, . . . , P}, which has a substantial impact on ESS

and therefore needs careful choice. We follow Del Moral et al. (2012) and choose

the tempering sequence adaptively to ensure a sufficient level of particle diversity by

selecting the next value of ap such that ESS stays close to some target value ESStarget.

We do so by evaluating the ESS over a grid points a1:G,p of potential values of ap for

a given p and select ap as that value of ag,p, g = 1, . . . , G, whose ESS is closest to

ESStarget. Throughout our article ESStarget = 0.8M .

For this adaptive choice of tempering sequence, Beskos et al. (2016) establish

consistency results and central limit theorems for estimating (2) based on the SMC

output.

2.3 Marginal likelihood estimation with SMC

The marginal likelihood p (y) is often used in the Bayesian literature to compare

models by their posterior model probabilities (Kass and Raftery, 1995). An advan-

tage of SMC is that it automatically produces an estimate of p (y).
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Using the notation of Section 2.1, we note that ZP = p (y) and Z0 = 1,

p (y) =
P∏

p=1

Zp
Zp−1

with
Zp
Zp−1

=

ˆ (
ηp (θ)

ηp−1 (θ)

)
πp−1 (θ) dθ.

Because the particle cloud
{
θ

(p−1)
1:M ,W

(p−1)
1:M

}
at the (p− 1)st stage is an approximate

sample from πp−1 (θ), the ratio above is estimated by

Ẑp
Zp−1

=
M∑

i=1

W
(p−1)
i

ηp

(
θ

(p−1)
i

)

ηp−1

(
θ

(p−1)
i

) .

The estimate of the marginal likelihood is then

p̂ (y) =
P∏

p=1

Ẑap
Zap−1

. (4)

3 Methodology

3.1 Sequence of target densities

Suppose that yk, k = 1, ..., n are independent given θ so that the likelihood and

log-likelihood can be written as

L (θ) =
n∏

k=1

p (yk|θ) and ` (θ) =
n∑

k=1

`k (θ) , (5)

where `k (θ) = log p (yk|θ). We are concerned with the case where the log-likelihood

is computationally very costly, because n is so large that repeatedly computing this

sum is impractical.

Quiroz et al. (2018a) propose to subsample m observations and estimate `(θ) by
̂̀
m(θ) in (9) and subsequently estimate L(θ) by

L̂ (θ) = exp

(
̂̀
m(θ)− 1

2
σ̂2
m(θ)

)
, (6)

where σ̂2
m(θ) is an estimate of σ2(θ) = V

(
̂̀
m(θ)

)
. The motivation for (6) is that

exp
(
̂̀
m(θ)− σ2(θ)/2

)
is unbiased for L(θ) when ̂̀m(θ) is normal (Ceperley and

Dewing, 1999). Otherwise, if it is not normal or if the variance σ2(θ) is estimated,

it is unbiased for a perturbed likelihood L(m,n)(θ). Quiroz et al. (2018a) show that

when using the control variate in Section 3.2 in the estimator ̂̀m(θ), the fractional
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error of the perturbed likelihood is

∣∣∣∣
L(m,n)(θ)− L(θ)

L(θ)

∣∣∣∣ = O
(

1

nm2

)
.

Our approach is based on extending the target at the pth density, i.e. πp(θ) in

(3), to include the set of subsampling indices u = (u1, . . . , um), where u ∈ U ⊂
{1, . . . , n}m when sampling data observations with replacement. Let L̂p(θ) be an

estimator of the tempered likelihood L(θ)ap . Similar to Quiroz et al. (2018a), we

can unbiasedly estimate ap`(θ) with ap̂̀(θ), and since V
(
ap̂̀(θ)

)
= a2

pσ
2(θ) and

motivated by (6), we propose the annealed likelihood estimator

L̂p (θ) = exp

(
ap̂̀m(θ)− 1

2
a2
pσ̂

2
m(θ)

)
. (7)

The extended target at the pth density is

πp (θ,u) ∝ L̂p(θ)p (θ) p (u) = exp

(
ap̂̀m(θ)− 1

2
a2
pσ̂

2
m(θ)

)
p (θ) p (u) , (8)

where p(u) is the density of u (or, more strictly, a probability mass function since

u is discrete). At the final annealing step, (8) becomes πP (θ,u) ∝ L̂ (θ) p(θ)p(u),

which is the target considered in Quiroz et al. (2018a). Quiroz et al. (2018a) show

that the perturbed marginal density for θ, π(m,n)(θ) =
´
U πP (θ,u) du converges

in the total variation metric to π(θ) at the rate O (1/(nm2)). Hence, our proposed

approach is approximate but can be very accurate while also scaling well with respect

to the subsample size. For example, if we take m = O(
√
n), then by Quiroz et al.

(2018a, Part (i) of Theorem 1)

ˆ
Θ

∣∣π(m,n)(θ)− π(θ)
∣∣ dθ = O

(
1

n2

)
.

Moreover, suppose that ϕ(θ) is a scalar function with finite second moment. Then,

by Quiroz et al. (2018a, Part (ii) of Theorem 1)

∣∣∣Eπ(m,n)
(ϕ(θ))− Eπ (ϕ(θ))

∣∣∣ = O
(

1

n2

)
.

This gives our algorithm the theoretical guarantees of converging at a very fast rate

to the truth as n increases, both with respect to the posterior density (as measured by

total variation) and with respect to the posterior moments. We confirm empirically

that we get very accurate inference in our application in Section 4, even for a very

small m relative to n.
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The next section describes the approach in Quiroz et al. (2018a) for obtain-

ing efficient estimators of the log-likelihood. Section 3.3 describes the reweighting

and resampling steps. Section 3.4 describes the Markov move step. Section 3.5

shows how to estimate the marginal likelihood. Finally, Section 3.6 outlines the

memory advantage of our method for parallel computation compared to standard

(non-subsampling) SMC. Algorithm 2 summarizes our approach.

3.2 Efficient estimator of the log-likelihood

Quiroz et al. (2018a) propose to estimate `(θ) in (5) by the unbiased difference

estimator,

̂̀
m(θ) =

n∑

k=1

qk(θ) +
n

m

m∑

i=1

`uj(θ)− quj(θ), uj ∈ {1, . . . , n} iid, (9)

where

Pr(uj = k) =
1

n
for all k = 1, . . . , n and j = 1, . . . ,m,

and qk(θ) ≈ `k(θ) are control variates. The estimator is based on writing

` (θ) =
n∑

k=1

qk (θ) +
n∑

k=1

dk (θ) = q (θ) + d (θ) ,

with dk (θ) = `k (θ) − qk (θ), q (θ) =
∑

k qk (θ), and d (θ) =
∑

k dk (θ). The last

term on the right hand side of (9) is an unbiased estimator of d(θ). We now discuss

a choice of control variates due to Bardenet et al. (2017), which computes q(θ) in

O(1) time. Hence, the cost of computing the estimator is O(m) and we can take

m = O(
√
n) in order to achieve the convergence ratesO(1/n2) for both the perturbed

density and its moments as discussed in Section 3.1.

Let θ be some posterior location estimate of θ, for example the mean, obtained

from a current particle cloud from πp (θ,u). A second order Taylor series expansion

of the log-density around θ is

`k (θ) = `k
(
θ
)
+∇θ`k

(
θ
)> (

θ − θ
)
+

1

2

(
θ − θ

)> (∇θθ>`k
(
θ
)) (

θ − θ
)
+o
(
||θ − θ||

)
,

and we therefore approximate `k(θ) by

qk (θ) = `k
(
θ
)

+∇θ`k
(
θ
)> (

θ − θ
)

+
1

2

(
θ − θ

)> (∇2
θθ>`k

(
θ
)) (

θ − θ
)
,
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and o (δ) denotes the small order of δ, meaning o (δ) /δ → 0 as δ → 0. Then,

q (θ) = A
(
θ
)

+B
(
θ
) (
θ − θ

)
+

1

2

(
θ − θ

)>
C
(
θ
) (
θ − θ

)
,

where

A
(
θ
)

=
∑

k

`k
(
θ
)
, B
(
θ
)

=
∑

k

∇θ`k
(
θ
)>

and C
(
θ
)

=
∑

k

∇2
θθ>`k

(
θ
)
.

Note that the sums A
(
θ
)
, B
(
θ
)
, and C

(
θ
)

are computed only once at every stage

of the SMC, regardless of the number of particles. Then, for each particle, estimating

d(θ) by d̂m(θ) = (n/m)
∑

j duj(θ) is computed in O(m) time and so is (9) because

q(θ) is O(1). We can estimate σ2 (θ) = V
(
̂̀
m (θ)

)
by

σ̂2
m (θ) =

n2

m2

m∑

j=1

(
duj (θ)− du (θ)

)2
,

where du (θ) denotes the mean of the duj for the sample u = (u1, ..., um). We

note that σ̂2
m (θ) comes at virtually no cost since it involves terms that are already

evaluated when computing d̂m (θ).

Finally, we note that the variance of a2
pσ̂

2
m (θ) is much smaller than that of σ̂2

m (θ)

for small ap (0 ≤ ap ≤ 1). We can then consider a less accurate and faster control

variate obtained using only a first order Taylor series expansion. We experiment

with this in Section 4 and find that our approach is robust to a less accurate control

variate.

3.3 The reweighting and resampling steps

The initial particle cloud is now
{
θ

(0)
1:M ,u

(0)
1:M ,W

(0)
1:M

}
, obtained by generating the

{
θ

(0)
1:M ,u

(0)
1:M

}
from p (θ) and p (u), and assigning equal weights, i.e., W

(0)
1:M = 1/M .

The weighted particles
{
θ

(p−1)
1:M ,u

(p−1)
1:M ,W

(p−1)
1:M

}
at the (p− 1)st stage are a sample

from πp−1 (θ,u) and are propagated to πp (θ,u), by updating the weights W
(p)
1:M =

w
(p)
1:M/

∑M
i=1w

(p)
i , where

w
(p)
i = W

(p−1)
i exp

(
(ap − ap−1) ̂̀m(θ

(p−1)
i )− 1

2

(
a2
p − a2

p−1

)
σ̂2
m(θ

(p−1)
i )

)
.

The resampling step is described in Section 2.1.
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3.4 The Markov move step

We now outline the Markov move step of our approach, which utilizes Hamiltonian

dynamics to propose distant particle moves and data subsampling in order to effi-

ciently compute the dynamics. Similarly to Section 2.1, the Markov move is designed

to leave each of the sequence target densities πp (θ,u), for p = 0, ..., P invariant. To

accommodate subsampling, it is divided into two parts and is described in Algo-

rithm 1. We refer the reader to Dang et al. (2018) for the details.

Algorithm 1 Single Markov move with a kernel invariant for πp(θ,u) in (8).

For i = 1, ...,M ,

1. Sample ui|θi,y: Propose u∗ ∼ p (u), and set ui = u∗, with probability

αu = min


1, r :=

exp
(
ap̂̀m (θi,u

∗)− 1
2
a2
pσ̂

2
m (θi,u

∗)
)

exp
(
ap̂̀m (θi,ui)− 1

2
a2
pσ̂

2
m (θi,ui)

)


 , (10)

The u∗ is proposed from the prior and is independent of the current value of ui,
so the difference between the log of the numerator and log of the denominator
of the ratio r in (10) can be highly variable. This move might get stuck when
the numerator is significantly overestimated. A remedy is to induce a high
correlation ρ between the log of the estimated annealed likelihood at the current
and proposed draws in (10). This can be achieved either through correlating
the u as in Deligiannidis et al. (2018) (see Quiroz et al. 2018a for discrete u)
or by block updates of u as in Tran et al. (2017); Quiroz et al. (2018b). We
implement the block updates with G blocks, which gives a correlation ρ ≈ 1− 1

G
.

2. Sample θi|ui,y: Given a subset of data ui, we move the particle θi using
a Hamiltonian Monte Carlo (HMC) proposal in a Metropolis-Hastings (MH)
algorithm. This becomes a standard HMC move for a given subset u.

Note that the above is a Gibbs update of θi,ui|y. The MH within Gibbs performed
in Step 1. is valid (Johnson et al., 2013) and so is the HMC within Gibbs (Neal,
2011) in Step 2. Therefore, this kernel has πp(θ,u) as its invariant distribution.
Dang et al. (2018) previously proposed an MCMC version of this algorithm.

The HMC proposal has a few parameters that need to be determined, such as

the mass matrix M , the step size ε, and the number of leapfrog steps L. We follow

Buchholz et al. (2018), who develop a tuning procedure for all the parameters in a

HMC proposal within a SMC framework.
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Algorithm 2 Subsampling Sequential Monte Carlo

1. Initially, sample the particles
{
θ

(0)
i ,u

(0)
i

}
from the prior densities p (θ) and

p (u) and give all particles equal weights, Wi = 1/M , i = 1, ...,M . Initialize
p = 0.

2. While the tempering sequence ap 6= 1 do

(a) Set p← p+ 1

(b) Find ap adaptively to maintain the ESS around ESStarget (Section 2.2).

(c) Reweighting: compute the unnormalized weights

w
(p)
i = W

(p−1)
i

ηap

(
θ

(p−1)
i ,u

(p−1)
i

)

ηap−1

(
θ

(p−1)
i ,u

(p−1)
i

)

= W
(p−1)
i exp

(
(ap − ap−1) ̂̀m(θ

(p−1)
i )− 1

2

(
a2
p − a2

p−1

)
σ̂2
m(θ

(p−1)
i )

)
,

and normalize as W
(p)
i = wi∑M

i′=1 wi′
, i = 1, ...,M .

(d) Compute θ as θ =
∑M

i=1W
(p)
i θ

(p−1)
i and then obtain

n∑

k=1

`k
(
θ
)
,

n∑

k=1

∇θ`k
(
θ
)
,

n∑

k=1

∇2
θθ>`k

(
θ
)

and the mass matrix M = Σ−1
(
θ
)
. Note that this step is based on the

full dataset.

(e) Resample the particles
{
θ

(p−1)
i ,u

(p−1)
i

}M
i=1

using the weights
{
W

(p)
i

}M
i=1

to obtain resampled particles
{
θ

(p)
i ,u

(p)
i

}M
i=1

and set W
(p)
i = 1/M .

(f) Apply R Markov moves to each particle θ
(p)
i ,u

(p)
i using Algorithm 1.

3.5 Estimating the Marginal Likelihood

Our approach can naturally be extended from Section 2.3 by considering the aug-

mented target density πp(θ,u) in (8). First, write the ratio of marginal likelihoods

as
Zp
Zp−1

=

ˆ
γp(θ)πp−1(θ)dθ, with γp(θ) =

ηp(θ)

ηp−1(θ)
,

12



and we wish to estimate Zp

Zp−1
, i.e. we need γp(θ,u) such that

Zp
Zp−1

=

ˆ
U

ˆ
Θ

γp(θ,u)πp−1(θ,u)dθdu.

If we take

γp(θ,u) =
ηp(θ,u)

ηp−1(θ,u)
,

then

ˆ
U

ˆ
Θ

γp(θ,u)πp−1(θ,u)dθdu =

ˆ
U

ˆ
Θ

ηp(θ,u)

ηp−1(θ,u)

ηp−1(θ,u)

Zp−1

p(θ)p(u)dθdu

=
Zp
Zp−1

.

Thus, if
{
θ

(p−1)
1:M ,u

(p−1)
1:M ,W

(p−1)
1:M

}
at the (p− 1)st sequence is an approximate sample

from πap−1 (θ,u), we estimate the ratio Zp/Zp−1 by

Ẑp
Zp−1

=
M∑

i=1

W
(p−1)
i

ηp

(
θ

(p−1)
i ,u

(p−1)
i

)

ηp−1

(
θ

(p−1)
i ,u

(p−1)
i

) ,

and the marginal likelihood estimate is obtained using this expression in (4).

3.6 Efficient memory management by data subsampling

We now explain in detail how data subsampling helps parallel computing from a

memory efficiency point of view. Suppose first that we perform standard SMC (using

all the data) and that we apply computer parallelism using N workers, so that

each worker deals, on average, with M/N particles. In this case, for each stage p,

the computations performed for each particle require repeated likelihood evaluations

(using all n data) when applying R Markov move steps. Hence, each worker needs

to have access to the full dataset.

Suppose now that we use our data subsampling approach in the same setting using

M/N particles for each of the N workers. Then, at the beginning of each stage p of

the algorithm, we still require a full data evaluation for computing A(θ), B(θ) and

C(θ) in Section 3.2. However, at each p, we can now subsample the data according

to u
(p−1)
i for each particle and subsequently perform the R Markov move steps, which

now require repeated estimated likelihood evaluations (using m � n observations)

and in addition A(θ), B(θ) and C(θ). Now each worker needs to have access only

to the subsampled dataset, as well as A(θ), B(θ) and C(θ). However, these are only

13



summaries of the full dataset and are therefore very memory efficient.

4 Evaluations

4.1 Experiments

We now evaluate our methodology through the following experiments.

• Experiment 1: The usefulness of the Hamiltonian Monte Carlo kernel.

We show how effective a HMC kernel for the Markov move step is compared

to a random walk proposal and a MALA proposal.

• Experiment 2: Evaluating the speed and the accuracies of the marginal likelihood

estimate and the approximate posterior density.

We show that our subsampling approach is accurate by comparing the estimates

of the marginal likelihood and posterior density to those obtained by the full

data SMC, which represent the gold standard estimates.

• Experiment 3: Evaluating the effect of the control variate.

We show that our subsampling approach can further improve the speed by

using a first order control variate instead of the second order alternative (see

Section 3.2 for details). We conclude that the results in terms of accuracies

of marginal posterior densities and marginal likelihood estimates are robust to

this choice of control variates.

• Application: Non-linear bankruptcy modeling.

We perform inference in a non-linear bankruptcy model for a large dataset

of Swedish firms. The results are compared against the MCMC competitor

Subsampling MCMC (Quiroz et al., 2018a) implemented with a Hamiltonian

data subsampling proposal (Dang et al., 2018). We use the estimate of the

marginal likelihood to perform model selection between a non-linear model

and a linear model.

We tune all SMC algorithms following Buchholz et al. (2018), whom provide a

tuning procedure for all parameters in the Markov kernel. We use M = 280 particles,

a choice motivated by our cluster with 28 cores with each core dealing (on average)

with 10 particles. We repeat this 10 times (on different machines) to computed the

standard error of the log marginal likelihood estimator.

14



4.2 Models and data

We use the following models and datasets to evaluate our methodology.

Logistic regression. The model for the response yi ∈ {0, 1} given a set of

covariates xi ∈ Rdx and parameters θ ∈ Rdθ , with dx = dθ, is

p (yi|xi,θ) =

(
1

1 + exp
(
x>i θ

)
)yi (

1

1 + exp
(
−x>i θ

)
)1−yi

.

For Experiment 1 and 3 in, respectively, Section 4.3 and 4.5, we use the HIGGS

dataset (Baldi et al., 2014) that contains n = 11, 000, 000 observations and 28 co-

variates. The response is “detected particle” and 21 of the covariates are kinematic

properties measured by particle detectors, while 7 are high-level features to capture

non-linearities. Together with the intercept this forms dθ = 29 and we assign the

prior θ ∼ N (0, Idθ) where Id is the d × d identity matrix. For the application in

Section 4.6, we use a Swedish firm bankruptcy dataset that contains n = 4, 748, 089

observations with firm default as the response variable and eight firm-specific and

macroeconomic covariates, which gives 9 covariates after adding an intercept. We

consider a generalized additive model by basis expansions of the covariates, see Sec-

tion 4.6 for details. This example uses the prior θ ∼ N (0, 102Idθ). We show how to

perform model selection using our methodology.

Student-t regression. We consider a univariate Student-t regression

yi = x>i θ + ei, ei ∼ t(ν = 5),

where t is the Student-t distribution with ν degrees of freedom. For Experiment 2,

we simulate a dataset with n = 500, 000 and with dθ = 50, where the covariates are

simulated such that the marginal variances are 1 and their pairwise correlation is

0.9. The parameters are simulated independently from Uniform(−5, 5). We assign

the prior θ ∼ N (0, 10Idθ).

Poisson regression. Our final model is a Poisson regression where the univariate

y follows a Poisson distribution with an expectation that is log-linear, i.e.

yi|xi ∼ Poisson(exp(x>i θ)).

We generate n = 200, 000 observations with dθ = 30 covariates simulated from

xi ∼ N (0, I29) (the intercept is 1). The parameters are simulated independently

from Uniform(−0.2, 0.2) and are assigned the prior θ ∼ N (0, 0.1Idθ).
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Table 1: Comparing the performances of three kernels for the Markov move, Hamil-
tonian Monte Carlo (HMC), Metropolis Adjusted Langevin Algorithm (MALA) and
Random Walk (RW). The table shows the estimate of the log of the marginal like-
lihood with standard error in parenthesis, the CPU time, the number of annealing
steps P (tuned to maintain ESS ≈ 0.8M) and the number of Markov moves R
(tuned as in Buchholz et al., 2018). The results are for the logistic regression model
estimated using the HIGGS data and M = 280 particles. All methods use the second
order control variate in Section 3.2. The results are averaged over 10 runs, which are
used to compute the standard error of the estimator.

log marginal likelihood CPU time (hrs) P R

HMC -7,013,460.90 2.31 106 5
(0.32)

MALA -7,013,462.49 4.77 106 20
(0.26)

RW -7,013,461.43 33.43 106 200
(0.32)

4.3 Experiment 1: Evaluating the Markov move kernel

We now evaluate how effectively the Hamiltonian Monte Carlo Markov move step

addresses the particle depletion problem compared to a random walk kernel and a

MALA kernel. To this end, we use the logistic regression model estimated using the

HIGGS data. We recall that the tuning parameters are set following Buchholz et al.

(2018). The mass matrix M in both HMC and MALA is taken as Σ̂−1, which is the

estimated inverse covariance matrix of the tempered posterior. We note that each

step in the sequence has a corresponding estimate of this inverse covariance matrix,

obtained using the corresponding particles from that step. For the random walk,

the optimal scaling (2.382/dθ)Σ̂
−1 (Roberts et al., 1997) resulted in numerical errors,

which is why we further scaled with 0.1.

Table 1 shows the results obtained using the second order Taylor series expansion

control variate in Section 3.2. The log-likelihood estimator has m = 5, 000 subsam-

ples and the block-pseudo marginal is carried out using G = 100. It is clear that the

Hamiltonian approach is computationally faster, and this is because it needs to take

a smaller number of Markov steps R. The table also shows that the estimate of the

log marginal likelihood is very similar for all methods. For the rest of our article we

use the HMC kernel.
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Figure 1: Kernel density estimates of a subset of the marginal posterior densities of
θ for the Student-t regression model with simulated data explained in Section 4.2.
The density estimates are obtained by Subsampling MCMC and Subsampling SMC.

4.4 Experiment 2: Evaluating the speed and accuracy

We note at the outset that obtaining a gold standard estimate of the marginal like-

lihood to evaluate against is not feasible for the two largest datasets HIGGS and

bankruptcy. This is because the full dataset needs to be available at each worker

(we use 28) in order to compute the likelihood together with its gradient and Hes-

sian, which quickly consumes the RAM of the computer. We therefore consider the

Student-t and Poisson models and datasets in Section 4.2 for this experiment. For

both examples we use G = 100 blocks and the second order Taylor series control vari-

ates and set m to correspond to a sample fraction of about 0.0025. The results are

shown in Table 2, which shows that our method is about 6.5 to 10.5 times faster and,

moreover, confirms the accuracy of the marginal likelihood estimate of our method.

The table also shows the results from the Laplace approximation to the marginal

likelihood which, while arguably easier to compute, might not provide an accurate

approximation. Finally, Figures 1 and 2 show that the marginal posterior densities

are very well approximated for both the Student-t regression and the Poisson regres-

sion (we have confirmed this accuracy for all parameters but omitted due to space

restrictions).
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Table 2: Comparing the performances of Subsampling SMC and full data SMC. The
table shows the estimate of the log of the marginal likelihood with standard error
in parenthesis, the CPU time, the number of annealing steps P (tuned to maintain
ESS ≈ 0.8M) and the number of Markov moves R (tuned as in Buchholz et al.,
2018). The results are for the Student-t regression and Poisson regression models
estimated using the simulated datasets explained in Section 4.2. We use M = 280
particles. All methods use the second order control variate in Section 3.2. The
results are averaged over 10 runs, which are used to compute the standard error of
the estimator.

log marginal likelihood CPU time (hrs) P R

Student-t regression

(n = 500, 000,m = 1, 200)

Full data SMC -815,775.82 5.92 126 4
(0.39)

Subsampling SMC -815,773.49 0.57 127 4
(0.59)

Laplace approximation -815,683.52

Poisson regression

(n = 200, 000,m = 500)

SMC -260,888.69 0.94 80 4
(1.40)

Subsampling SMC -260,887.87 0.14 80 5
(0.27)

Laplace approximation -260,895.78
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Figure 2: Kernel density estimates of a subset of the marginal posterior densities
of θ for the Poisson regression model with simulated data explained in Section 4.2.
The density estimates are obtained by Subsampling MCMC and Subsampling SMC.

4.5 Experiment 3: Evaluating the effect of the control vari-

ate

We have previously shown that our approach provides accurate estimates of the

marginal likelihood and marginal posterior densities using a second order Taylor

series expansion. A natural question is: how robust are these results to the accuracy

of the control variate? Table 3 shows the result for the HIGGS dataset, which

confirms that the marginal likelihood estimator remains accurate when using a first

order control variate, and further improves the speed by a factor of about 5. Figure

3 shows that the marginal posterior densities remain accurate (we have confirmed

similar accuracy for all parameters). We make a final remark that it is possible to

switch between the control variates. For example, a sensible strategy is to start with

a faster but less accurate control variate when ap is small as the variance of ap̂̀m(θ)

might then be small even if the variance of ̂̀m(θ) is large. For larger ap, when the

variance reduction from the multiplication is less pronounced, one might switch to

the more accurate second order control variate.

4.6 Application: Non-linear modeling of firm bankruptcy

We now illustrate how to use our method for model selection using the large firm

bankruptcy dataset explained in Section 4.1. We compare our marginal posterior
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Table 3: Comparing the performances of the less accurate control variate (1st order)
and more accurate control variate (2nd order). The table shows the estimate of the
log of the marginal likelihood with standard error in parenthesis, the CPU time, the
number of annealing steps P (tuned to maintain ESS ≈ 0.8M) and the number of
Markov moves R (tuned as in Buchholz et al. (2018)). The results are for the logistic
regression model, estimated with the HIGGS dataset explained in Section 4.2. We
use M = 280 particles. The results are averaged over 10 runs, which are used to
compute the standard error of the estimator.

log marginal likelihood CPU time (hrs) P R

1st order -7,013,461.07 0.47 106 5
(0.46)

2nd order -7,013,460.90 2.31 106 5
(0.32)
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−0.002 0.000 0.002

θ20

0.49 0.50 0.51

θ25

1st order

2nd order

Figure 3: Kernel density estimates of a subset of the marginal posterior densities of
θ. The density estimates are both obtained by Subsampling SMC, using different
control variates based on a 1st and 2nd order Taylor series expansion as explained
in Section 3.2.
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density estimates against those of Subsampling MCMC (Quiroz et al., 2018a) as

implemented by Dang et al. (2018) and find them nearly indistinguishable. We

also compare both methods to the ground truth full data MCMC as in Dang et al.

(2018). However, note that Subsampling MCMC cannot be used for model selection.

Common methods such as Chib and Jeliazkov (2001) are not useful for Subsam-

pling MCMC since the (perturbed) likelihood cannot be evaluated. This is a major

advantage of Subsampling SMC compared to Subsampling MCMC.

We perform model selection between two models. The first model M1 is linear

in data (in logit scale) with dθ = 9. The second model M2 is non-linear in data

(in logit scale) using B-splines as in Dang et al. (2018), with a total of dθ = 81

coefficients. Non-linear bankruptcy models for this dataset have been analyzed in

Quiroz and Villani (2013) and Giordani et al. (2014). Let Pr(Ma) denote the prior

probability of model a, a = 1, 2. Then the posterior probability of model Ma is

Pr(Ma|y) ∝ p(y|Ma) Pr(Ma),

where p(y|Ma) is the marginal likelihood of modelMa. We estimate p(y|Ma) with

the method outlined in Section 3.5. Given the marginal likelihood of each model,

we can compute the Bayes Factor (BF) for the non-linear model M2 vs the linear

model M1 as

BF21 =
Pr(M2|y)

Pr(M1|y)
. (11)

The non-linear model is favored if BF21 > 1. We use the strength of evidence in

Jeffreys (1961, p. 438), in which 103/2 < BF21 < 102 is considered very strong

evidence and BF21 > 102 is decisive evidence. We use the uniform prior Pr(M1) =

Pr(M2) = 1/2.

We let the number of blocks G = 100 and set the subsample size m = 3, 000. For

Subsampling MCMC we set these tuning parameters as in Dang et al. (2018). The

estimates from the full data MCMC is considered as the “gold standard” when we

assess the accuracy of the algorithms. This is achieved through an MCMC chain of

2, 000 post burn-in MCMC samples, with burn-in set to 1, 000 iterations. We have

confirmed that the MCMC mixes well and the iterates are therefore an adequate

representation of the true posterior.

Table 4 shows the estimate of the log marginal likelihood for both models and

the corresponding Bayes factors obtained by Subsampling SMC. The table shows

decisively that the non-linear model is superior. We again stress that producing

marginal likelihood estimates is very convenient by SMC, whereas not possible with

Subsampling MCMC.
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Table 4: Estimates of the log marginal likelihoods and Bayes factors BF21 in (11) for
selecting between M1 and M2. The estimates of the Standard Error (SE) for the
marginal likelihood estimates are in parenthesis. The SE is computed using the 10
independent parallel runs. The prior probabilities are Pr(M1) = Pr(M2) = 1/2.

log p̂(y|M1) log p̂(y|M2) BF21

Bankruptcy −208, 517.79
(0.21)

−200, 215.13
(6.57)

exp(8, 302.66)

Figures 4 shows the kernel density estimates of the marginal posterior of selected

parameters of the non-linear model for the bankruptcy dataset. It is evident that

both Subsampling SMC and Subsampling MCMC are very accurate and we have

confirmed the accuracy of the kernel density estimates for all the parameters, which

we do not show here to save space. Instead, Figure 5 shows the estimated marginal

posterior expectations and posterior variances by the two algorithms for all the pa-

rameters in the non-linear models. This confirms the accuracy of the estimates of

each single parameter. We have confirmed that the kernel density estimates and the

estimated marginal posterior expectations and posterior variances are accurate also

for the linear model (not shown here).
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Subsampling SMC
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Figure 4: Kernel density estimates of a subset of the marginal posterior densities of
θ for the logistic model M2 for the bankruptcy dataset. The density estimates are
obtained by MCMC, Subsampling MCMC and Subsampling SMC. MCMC represents
the ground truth.
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Êπ(m,n)
(θ)

10−2 100 102

MCMC

10−2

100

102

S
ub

sa
m

pl
in

g
M

C
M

C

V̂π(m,n)
(θ)

0 8 16

MCMC

0

10

S
ub

sa
m

pl
in

g
S

M
C
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Figure 5: Estimates of marginal posterior means (left panel) and posterior variances
(right panel) of θ for the logistic model M2 for the bankruptcy dataset. The esti-
mates are obtained by Subsampling MCMC and Subsampling SMC and plotted as
dots, together with a 45 degree line. This line corresponds to estimates that are in
perfect agreement.

Finally, the superiority of the non-linear model is well understood for the bankruptcy

data from Figure 6, which shows that the relationship between the bankruptcy prob-

ability and the covariate Size is not a logistic function of the covariate as the linear

model suggests. The figure shows again that the results obtained from Subsampling

SMC are indistinguishable from those of Subsampling MCMC.
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Figure 6: Realized and estimated bankruptcy probabilities. The figure shows the
results with respect to the size variable (logarithm of deflated sales) for Subsampling
SMC (left panel) and Subsampling MCMC (right panel). The data are divided into
100 equally sized groups based on the size variable. For each group, the empirical
estimate of the bankruptcy probability is the fraction of bankrupt firms. These
empirical estimates are represented as dots, where the corresponding x-value (size)
has been set to the mean within the group. The model estimates for each of the 100
groups are obtained by, for each posterior sample θ, averaging the posterior predictive
Pr (ỹk = 1|y, xk) for all observations k in a group, and subsequently computing the
posterior predictive mean E (ỹk = 1|y, xk) (solid line) and 90% prediction interval
(quantiles 5-95, shaded region).

5 Conclusions

We proposed a simple and effective approach to speed up sequential Monte Carlo for

static Bayesian models using data subsampling. The key ingredients of our approach

are an efficient annealed likelihood estimator and an effective Markov kernel move

step based on Hamiltonian Monte Carlo which boosts particle diversity. This kernel

is computationally expensive for large datasets and data subsampling is crucial to

obtain a feasible approach. We argued that the subsampling approach is also very

convenient for managing computer memory when implementing SMC using parallel

computing, because it avoids the need for each worker to store the full dataset. We

demonstrated that the method performs efficient and accurate inference for three

generalized linear models and a generalized additive model. Moreover, we showed

that it allows Bayesian model selection through accurate estimates of the marginal

likelihood, which is a major advantage compared to Subsampling MCMC.
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