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We propose a dynamic semi-parametric framework to study time variation in tail pa-

rameters. The framework builds on the Generalized Pareto Distribution (GPD) for
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1 Introduction

This paper proposes a dynamic semi-parametric framework to study time variation in tail

fatness for long univariate time series. The new method builds on ideas from Extreme

Value Theory (EVT) and uses a conditional Generalized Pareto Distribution (GPD) with

time-varying parameters to approximate the tail beyond a given threshold. The GPD is an

appropriate tail approximation for most heavy-tailed densities used in financial economics,

econometrics, and actuarial sciences; see, for example, Embrechts et al. (1997), Coles (2001),

McNeil et al. (2010, Chapter 7), and Rocco (2014). As a result, the GPD plays a central role

in the study of extremes, comparable to the role of the normal distribution when studying

observations in the center of the distribution. Our framework allows for studying time-

variation in the incidence of such extremes.

The time-varying tail shape and tail scale parameters in our model are driven by the

score of the GPD density; see Creal et al. (2013) and Harvey (2013). As a result, the

model is observation-driven in the terminology of Cox (1981) and its time-varying parameters

are perfectly predictable one step ahead. In addition, the log-likelihood function is known

in closed form and allows for parameter estimation and inference via standard maximum

likelihood methods. Our results show that our model is able to recover the time-varying

tail shape and tail scale parameters well in both simulated and empirical data. In addition,

the model recovers time-variation in EVT-based market risk measures such as Value-at-Risk

(VaR) and Expected Shortfall (ES). This is the case even if the model is misspecified or the

GPD approximation is not exact. The latter is particularly important in our finite sample

setting, where the limiting EVT result of the GPD can only hold approximately given the

choice of a finite exceedance threshold in any particular data set.

We illustrate our modeling framework using two applications: U.S. equity log-returns,

and changes in euro area sovereign bond yields.1 Each data set consists of two time series

that we model separately. We first consider daily log-returns for a stock index (S&P500) and

an individual stock (IBM). The S&P500 log-returns range from July, 3 1962 to December,

1The web appendix considers additional applications to exchange rates and commodity prices.
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31 2020, while the IBM stock returns range from January 2, 1926 to December 31, 2020.

Focusing on the left tail, and controlling for potential time-variation in the EVT thresholds,

we find that both GPD parameters vary significantly over time. The tail shape varies between

approximately 0.05 and 0.25 for the S&P 500, and between 0.05 and 0.35 for IBM. These

values imply a maximum moment of order 1/0.25 = 4 to 1/0.05 = 20 for the S&P 500, and

3 to 20 for IBM. Confidence bands around the filtered time-varying tail shape parameters

suggest that the tail shape parameter is almost always far from the thin-tailed setting.

Our second illustration demonstrates how additional control variables can be included to

capture time-variation in tail shapes and tail scales. Specifically, we study changes in Italian

and Portuguese five-year benchmark bond yields, sampled at a 15-minute frequency, during

the extremely adverse euro area sovereign debt crisis between 2010 and 2012. Again, we

find that both GPD parameters vary significantly over time. The tail shape varies between

0.1 and 0.4 for Italy and between 0.05 and 0.6 for Portugal, implying moment ranges of

2.5–10 and 1.7–20, respectively, and thus incidences of extreme fat tails. We also find that

part of the variation can be explained by including central bank bond purchases as an

additional covariate, and provide a way to translate the estimated impact coefficients into

their economically-interpretable impact on market risk measures such as VaR.

Our paper is closely related to a growing strand of literature on modeling time-variation

in EVT tail parameters. Several papers propose methodology to study time variation in

the tail index. Davidson and Smith (1990), Coles (2001, Chapter 5.3), and Wang and Tsai

(2009), among others, also index the GPD tail parameters with time subscripts and equip

them with a parameterized structure. Our approach is different in that their “tail index

regression” approach requires conditioning variables that explain (all of) the tail variation.

Such variables are not always available. By contrast, our “filtering approach” does not

require such conditioning variables, and is arguably better suited for the real-time monitoring

of extreme equity or bond market risks. Second, Quintos et al. (2001), Einmahl et al. (2016),

Hoga (2017), and Lin and Kao (2018) derive formal tests for a structural break in the tail

index. A number of subsequent studies applied such tests to financial time series data.

Werner and Upper (2004) identify a break in the tail behavior of high-frequency German
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Bund future returns. Galbraith and Zernov (2004) argues that certain regulatory changes

in U.S. equity markets have altered the tail index dynamics of equities returns. de Haan

and Zhou (2021) propose a non-parametric approach to estimating the extreme value index

locally. Our paper adds to the literature by proposing a framework that allows us to study

both the tail shape and tail scale dynamics directly in a semi-parametric way. Explanatory

covariates can be included in the dynamics of both parameters, and likelihood ratio tests

are available to test economically relevant hypotheses. Finally, unlike Patton et al. (2019),

our tail VaR and ES dynamics explicitly account for fat tail shape beyond a threshold as

emerging from EVT. The dynamics based on the score for the GPD contain weights for

extreme observations. Such weights are absent in the elicitable score functions of Patton

et al. (2019). The resulting dynamics in our model are more robust, particularly for the ES.

Whereas de Haan and Zhou (2021) take a non-parametric perspective, the methodological

part of this paper is closest to Massacci (2017), who also proposes a dynamic parametric

model for the GPD parameters. Our framework is different from Massacci (2017) in that

we specify both GPD parameters as functions of their respective scores. Massacci (2017),

by contrast, uses only the score of the first (tail index) parameter to drive both parameters.

This is not optimal in the sense of Blasques et al. (2015), who require that each time-

varying parameter is associated to its own score. Our paper further differs from Massacci

(2017) in that we suggest time-varying EVT thresholds to locate the boundary between the

center of the distribution and its tail. This implies that we do not need to assume that

the time series at hand has no volatility clustering, nor that we need to pre-filter for such

volatility clustering. Absence of conditional heteroscedasticity would be hard to defend for

the financial data considered in this paper. Finally, we differ from Massacci (2017) in that

we discuss inference on both deterministic and time-varying parameters by considering the

asymptotic properties of the maximum likelihood estimator, provide sufficient conditions

for the stationarity and ergodicity and the existence of moments of the factor process and

observations, explain how to introduce additional conditioning variables into the model and

assess their usefulness in economic terms, and provide Monte Carlo evidence on the model’s

performance in a range of challenging settings.
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We proceed as follows. Section 2 presents our statistical model, the asymptotic statistical

properties of the model and the maximum likelihood estimator. Section 3 discusses simula-

tion results. Section 4 illustrates the model using U.S. equity data and euro area sovereign

yields data. Section 5 concludes. Derivations and more results are in the web appendix.

2 Statistical model

2.1 Time-varying tail shape and tail scale

2.1.1 Conditional EVT framework

Consider a univariate time series yt, t = 1, . . . , T , where T denotes the number of observa-

tions. This section then describes our model for yt with time-varying tail shape and scale.

We assume yt is generated by a conditional probability density function (pdf) g(yt | Ft−1),

where Ft−1 = {yt−1, yt−2, . . . , y1} denotes the information set containing all past data. By

keeping the conditional density of yt in its current general form, we stay close to the semi-

parametric nature of an extreme value-based approach and make no modeling assumptions

about the center of the distribution. Alternatively, we could specify a parametric distribu-

tion for yt with for instance a time-varying conditional location µt and scale σt. The µt and

σt could then be used to pre-filter the raw yt. We do not pursue such an approach here. First,

modeling the center of the conditional distribution leads away from the focus on the tails

only, which is the key aspect in an EVT-based approach. Second, designing an additional

model for time-varying location and scale would create another layer of complexity to the

model, with accompanying model risk and parameter uncertainty. We therefore keep the

general form of g(yt | Ft−1) and focus on its tail using a dynamic extension of arguments

from extreme value theory (EVT), similar to Patton (2006)’s extension of copula theory to

the dynamic, observation driven setting.

We assume g(yt | Ft−1) has heavy tails with time-varying tail index αt > 0. A familiar

example is when g(yt | Ft−1) is a univariate Student’s t distribution with νt = αt degrees

of freedom. Other examples include the Pareto, inverse gamma, log-gamma, log-logistic, F ,
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Fréchet, and Burr distribution with one or more time-varying shape parameters (for details

and further discussion see e.g. Johnson et al. (1994), Embrechts et al. (1997), or McNeil

et al. (2010, Ch. 7.3)). Rather than modeling the (dynamic) tail shape of an arbitrarily

chosen parametric family of distributions, we appeal to well-known results from the EVT

literature: the conditional cumulative distribution function (cdf) G(yt | Ft−1) of yt can

under very general conditions be approximated by G(yt | Ft−1) ≈ G(τt | Ft−1) + (1−G(τt |

Ft−1))P (xt; δt, ξt) with xt = yt − τt for sufficiently high thresholds τt ∈ R+. More precisely,

we have

lim
τt→∞

sup
xt≥0

∣∣P [Yt ≤ xt + τt | Yt > τt, Ft−1]− P (xt; δt, ξt)
∣∣

= lim
τt→∞

sup
xt≥0

∣∣∣∣G(xt + τt | Ft−1)−G(τt | Ft−1)

1−G(τt | Ft−1)
− P (xt; δt, ξt)

∣∣∣∣ = 0, (1)

for parameters ξt = α−1
t and δt, both possibly depending on τt, and with Yt denoting the

random variable corresponding to the realization yt. Here, P (xt; δt, ξt) denotes the cdf of the

Generalized Pareto Distribution (GPD), with cdf and pdf given by

P (xt; δt, ξt) = 1−
(

1 + ξt
xt
δt

)−ξ−1
t

, p(xt; δt, ξt) = δ−1
t ·

(
1 + ξt

xt
δt

)−ξ−1
t −1

, (2)

respectively (see, for example, McNeil et al., 2010). The quantity xt = yt − τt > 0 is

the so-called peak-over-threshold (POT), or exceedance, of heavy-tailed data yt over a pre-

determined threshold τt, and δt > 0 and ξt > 0 are the tail scale and tail shape parameter

of the GPD, respectively. Most continuous distributions used in statistics and the actuarial

sciences lie in the Maximum Domain of Attraction (MDA) of the GPD (see McNeil et al.,

2010, Chapter 7.1), meaning that they allow for the above tail shape approximation. By

focusing on the tail area directly using EVT arguments, we avoid having to make more

ad-hoc assumptions on the parametric form of the tail.

The result in (1) is a limiting result. In any finite sample, the threshold τt has to be

set to a specific, finite value, such that the GPD approximation will be inexact and the

distribution is in that sense misspecified. This will also be the case in our setting. The
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score-driven updates that we define later on for ξt and δt, however, still ensure that the

expected Kullback-Leibler divergence between the approximate GPD model and the true,

unknown conditional distribution P [Yt ≤ xt + τt | Yt > τt, Ft−1] is improved on average at

every step for sufficiently small steps, even if the GPD model is (partially) misspecified; see

Blasques et al. (2015).

The choice of the threshold τt is subject to a well-known bias-variance trade-off; see,

for instance, McNeil and Frey (2000). In theory, the GPD tail approximation only becomes

exact for τt → +∞. A high threshold, however, also implies a smaller number of exceedances

εt > τ , and more estimation error for the parameters of the GPD. Common choices for τt

from the literature are the unconditional 90%, 95%, and 99% empirical quantiles of yt; see

Chavez-Demoulin et al. (2014). In our setting, such choices are less useful as τt varies over

time. As we explain later, we use the approach of Patton et al. (2019) to set τt dynamically

in line with the data.

2.1.2 Time-varying parameters

A key step in (1)–(2) is that we use the conditional probabilities based on the information

set Ft−1. As a result, the tail parameters ξt and δt become time-varying. To capture this

time-variation, we model (ξt, δt)
′ using the score-driven dynamics introduced by Creal et al.

(2013) and Harvey (2013). In our time series setting, this implies that both δt and ξt are

measurable with respect to Ft−1. We ensure positivity of δt and ξt by using an (element-wise)

exponential link function (ξt, δt)
′ = exp(ft) for ft = (f ξt , f

δ
t )′ ∈ R2. The transition dynamics

for ft are given by

ft+1 = ω +

q−1∑
i=0

Aist−i +

p−1∑
j=0

Bjft−j, (3)

st = St∇t, ∇t = ∂ ln p(xt | Ft−1; ft, θ)/∂ft,

where vector ω = ω(θ) and matrices Ai = Ai(θ) and Bj = Bj(θ) depend on the deterministic

parameter vector θ, which needs to be estimated. The scaling matrix St may depend both
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on θ, ft, and Ft−1. Effectively, the recursion (3) updates ft at every point in time via a

scaled steepest ascent step to improve the expected fit to the GPD; see Creal et al. (2013);

Blasques et al. (2015). The score of (2) required in (3) is given by

∇t =


ξ−1
t · ln

(
1 + ξt δ

−1
t xt

)
−
(
1 + ξ−1

t

) ξtxt

δt + ξtxt

xt − δt
δt + ξtxt

 , (4)

where ln(·) denotes the natural logarithm; see Web Appendix A.1 for a derivation. We take

Ai and Bj as diagonal matrices.

Following Creal et al. (2014) we select the square-root inverse conditional Fisher infor-

mation of the conditional observation density to scale (4), i.e., St = L′t, with Lt the choleski

decomposition of the inverse conditional Fisher information matrix It = (LtL
′
t)
−1 = E[∇t∇′t |

Ft−1; ft, θ] = E[−∂∇t/∂f
′
t | Ft−1; ft, θ]. Compared to so-called inverse information matrix

scaling, the current scaling matrix has the advantage that the conditional variance of the

scaled score st is the unit matrix, i.e., E[sts
′
t | Ft−1] = I2. This gives the parameters Ai a

more natural interpretation, similar to the standard deviations of the state innovations in a

non-linear state-space model. For the GPD, we have

Lt =

1 + ξ−1
t 0

−1
√

1 + 2ξt

 , (5)

see Web Appendix A.2 for a derivation. Combining terms yields the scaled score

st = L′t∇t =


ξ−2
t (1 + ξt) · ln

(
1 + ξt δ

−1
t xt

)
+
δt − (ξt + 3 + ξ−1

t ) · xt
δt + ξtxt

√
1 + 2ξt

xt − δt
δt + ξtxt

 . (6)

Though the first element of the scaled score in (6) seems unstable for ξt near zero, the

expression actually has a finite left limit equal to limξt↓0 s1,t = 1− 2δ−1
t xt + 1

2
δ−2
t x2

t .

Figure 1 plots the two elements of (6) as a function of xt for different values of ξt and δt.
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Figure 1: News impact curves
The first element (left panel) and second element (right panel) of st in (6) is plotted against xt for different
values of ξt and δt.

The behavior of the scaled score is intuitive: large xts imply that both ξt and δt are adjusted

upwards and tails thus become fatter. The adjustments are largest when the current tail

index ξt and tail scale δt are low. It is precisely in such cases that observing a large xt is

unlikely. If it occurs nonetheless, the parameters are (strongly) adjusted to account better

for similar effects in the future.

The news impact curves become increasingly concave for lower values of ξt. For such

parameters, large xt values are already more likely due to the fat-tailed nature of the GPD

itself. As a result, the parameters need to be adjusted less if a large xt actually materializes.

This resembles the well-known robustness properties of score-driven updates in the context

of time-varying volatility modeling; see Creal et al. (2013) and Harvey (2013). It also dis-

tinguishes our current set-up sharply from an approach directly based on quantile functions;

see Patton et al. (2019) and Catania and Luati (2023), in particular for risk measures such as

ES. In Patton et al. (2019), ES reacts linearly rather than concavely to the VaR exceedance.

This can result in noisy or unstable ES estimates. Figure 1 illustrates that the score-driven

approach is less susceptible to such instabilities and can therefore result in more interpretable

parameter paths.

We also note that small realizations of xt imply downward adjustments of both ξt and

δt, up to the point where xt becomes very small. For very small xt > 0, ξt is adjusted
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upward: observations near the center of a fat-tailed distribution signal increased peakedness

(=leptokurtosis) and thus higher ξt; compare Lucas and Zhang (2016) for a similar effect in

the Student’s t setting.

When there is no tail observation, i.e. xt = yt − τt ≤ 0, the new observation carries no

information about ξt and δt; see McNeil et al. (2010, Chapter 7). In such cases we set the

score to zero and continue to use (3) to update ft. Long consecutive stretches of zero scores

could potentially lead to mean-reverting paths for ft, and thus (ξt, δt), with only discrete

“jumps” when new observations xt > 0 arrive following such stretches.2 If so, smoothing the

scaled score (6) can help to spread out the impact of the new information in xt. Smoothing

the scaled scores can also help when additional conditioning variables zt are available at

every t = 1, . . . , T ; see (8) and (10) below. Lagged values of the scaled score can be taken

into account via an exponentially-weighted moving average specification

ft+1 = ω + As̃t +Bft, s̃t = (1− λ)st + λs̃t−1, ⇒

ft+1 = (1− λ)ω + (1− λ)Ast + (λI2 +B)ft − λBft−1,
(7)

where λ ∈ [0, 1) is an additional parameter to be estimated or to be fixed ex-ante; see

Web Appendix A.3 for the derivation. This alters the values of (p, q) = (1, 1) in (3) to

(p, q) = (2, 1). While st is most often zero, s̃t is not. Clearly, (3) is a special case of (7)

for λ = 0. The smoothing approach in (7) is similar to the approach in Patton (2006),

who uses up to ten lags of the driver (in our case the score) to smooth the dynamics of the

time-varying parameter.

The transition equation for ft can be extended further if additional conditioning variables

are available by respecifying (7) as

ft+1 = ω + As̃t +Bft + Czt, (8)

where all explanatory variables are stacked into the column vector zt, and C is a conformable

2Alternatively, one could opt to not update ft at all until a new xt > 0 arrives. Empirically, both
approaches seem to work equally well.

10



matrix of impact coefficients that needs to be estimated. We illustrate this in our second

application in Section 4.

2.1.3 Time-varying thresholds

For the dynamic thresholds τt, we use the specification suggested by Patton et al. (2019),

τt+1 = ωτ + aτ ·
(
1{yt > τt} − (1− κ)

)
+ bττt, (9)

where ωτ ≡ (1 − bτ ) · q̂κ, q̂κ is the (observed) unconditional κ-quantile of yt, a
τ > 0 and

0 < bτ < 1 are two parameters to be estimated, and (1 − κ) is a sufficiently small tail

probability corresponding to the dynamic quantile τt, such as, for example, 10% or 5%. We

initialize τt at τ1 = q̂κ. The recursive specification (9) is driven by a zero mean innovation

process since E[1{yt > τt} | Ft−1, θ
τ ] = (1 − κ). The threshold τt+1 responds to quantile

exceedances in an intuitive way: the next quantile value τt+1 receives a positive shock of aτκ

if yt > τt, i.e., if the previous quantile was exceeded, and a negative shock of −aτ (1 − κ)

otherwise. For 0 < bτ < 1, the empirical unconditional quantile q̂κ serves as a long-term

attractor for (9). The transition equation for τt can also easily be extended to include

exogenous variables zt as in

τt+1 = ωτ + aτ ·
(
1{yt > τt} − (1− κ)

)
+ bτ · τt + cτ ′ · zt, (10)

for a suitable column vector of coefficients cτ .

2.1.4 Interpretation of time-varying parameters

It is important to briefly comment on parameter interpretability. The tail shape parameter ξt

can always be interpreted as observation yt’s inverse conditional tail index α−1
t . By contrast,

the estimated tail scale parameter δt need not have a straightforward interpretation in terms

of yt’s conditional scale σt. For example, assume that yt has a GPD conditional distribution

with time-varying tail shape parameter α−1
t and scale σt. Web Appendix B.1 demonstrates
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that the conditional tail probability P[Yt ≤ yt + τt | Yt > τt,Ft−1] then also has a GPD

shape (exactly, not only approximately). The tail shape parameter is the same as that of

the center : ξt = α−1
t . However, the tail scale parameter δt is very different from the scale

parameter σt that applies to the center, in particular δt = σt+α
−1
t ·τt. As a result, δt increases

with the threshold τt, varies positively with the tail shape parameter ξt, and, importantly,

should not be expected to provide a good estimate of the scale parameter σt that applies

to the center of the distribution of yt. A similar result can be derived if yt were Student’s

t-distributed with scale σt and degrees of freedom parameter αt when the tail probability

P[Yt ≤ yt + τt | Yt > τt,Ft−1] only has an approximate GPD shape; see Web Appendix B.2.

We return to this issue in our simulation Section 3, where we consider pseudo-true values

for ξt and δt to benchmark how well the model performs in terms of tracking an unknown

data generating process.

2.2 Stationarity and moments

The score-driven dynamics for ξt and δt are highly non-linear. Still, the structure of the

model allows us to obtain sufficient conditions for the stationarity and ergodicity (SE) of ft

and xt, and for the existence of unconditional moments of ft. To this end, we look at our

statistical model in equations (3)–(7) as a data generating process (DGP).

Given the bivariate structure of our time-varying parameter model, the process {ft}t∈Z
can be viewed as a stochastic recurrence equation (SRE) of the form

ft+1 = Φt (ft; θ0) = Φ (ft, xt; θ0) , t ∈ Z, (11)

where Φ : R2×R+×Θ 7→ R2 is a Borel measurable function, and θ0 ∈ Θ is the true parameter

vector contained in the parameter space Θ ⊂ R6. We make the following two assumptions.

Assumption 1. Assume that xt is drawn from the GPD distribution defined in (2), such that

the random variable εt := ξ−1
t ln (1 + ξt xt/δt) is an independent and identically distributed

noise term with unit exponential distribution, εt
iid∼ Exp(1).
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Assumption 2. For some integer r ≥ 1, let

E

[
ln sup

f

∥∥∥∥∥
r∏
i=1

Φ̇t−i (ft−i; θ0)

∥∥∥∥∥
]
< 0, (12)

where ‖M‖ =
√

trace (M ′M) is the Frobenius norm of a real-valued matrix M ∈ Rm×n, and

where Φ̇t (ft; θ0) := B + A∂s̃t
∂s′t
· ∂st
∂f ′t

, such that

Φ̇t (ft; θ0) :=

 bξ + aξ (1− λ) · ∂s
ξ
t

∂fξt
0

aδ (1− λ) · ∂s
δ
t

∂fξt
bδ

 , (13)

with

∂sξt

∂f ξt
= −ξ−1

t εt − ξtεt exp(−ξtεt) + (3ξ−1
t + 2ξ−2

t )(1− exp(−ξtεt))

− (ξt + 3 + ξ−1
t )εt exp(−ξtεt)

∂sδt

∂f ξt
=

1√
1 + 2ξt

(1− exp(−ξtεt)− ξt exp(−ξtεt)) +√
1 + 2ξt ·

(
−ξ−1

t (1− exp(−ξtεt)) + εt exp(−ξtεt) + ξtεt exp(−ξtεt)
)
.

Assumption A1 considers the model as the data generating process. By inverting the

GPD cdf in (2), we obtain that εt = ξ−1
t ln (1 + ξt xt/δt) = − ln(1 − ut) ∼ Exp(1) for a

standard uniformly distributed ut. Assumption A1 requires that these uniform random

variables constitute an i.i.d. process.

Assumption A2 requires contraction properties of the bivariate stochastic recurrence

equation. We note that we use the general form of the r-fold contractions, i.e., r itera-

tions of the transition equation of ft. In univariate models, sharp contraction conditions

(that ensure stationarity and ergodicity of the model) can usually be found by assuming

that r = 1; see, for example, Blasques et al. (2022). In multivariate systems, however, the

contraction condition with r = 1 is often violated, resulting in very small or uninteresting

stationarity regions. Working with the more general condition is therefore important. We

also show this in Figure 2 below. The idea behind A2 is that, when working with a multi-
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variate system, one can still ensure the existence of an SE solution if the system becomes

contractive eventually, i.e., after a sufficiently large number of r iterations. The contraction

condition in A2 results in a meaningful (non-degenerate) SE region, because the supremum

of Φ̇t (ft; θ0) over f has no degeneracies.

Using A1 and A2, we can verify the conditions of Bougerol (1993, Theorem 3.1). This

allows us to show that a unique SE solution exists for the bivariate score-driven process

{ft}t∈Z, and for the data {xt}t∈Z as generated by the DGP in Section 2.1. We summarize

this in the following theorem.

Theorem 1. Consider the model as defined by (2) and (3). Then under A1 and A2, the

SRE in (11) admits a unique stationary and ergodic solution {f̃t}t∈Z such that, for each fixed

initial condition f0 ∈ R2,

∥∥∥ft − f̃t∥∥∥ e.a.s.−−−→ 0 as t→∞,

where
e.a.s.−−−→ denotes exponentially fast and almost sure convergence (Straumann and Mikosch

(2006)). In addition, the process {xt}t∈Z generated by the model evaluated at θ0 is stationary

and ergodic.

Web Appendix C.1 presents the proof of Theorem 1. Next to the SE properties of the ft

process, we can also establish the existence of unconditional moments. This can be useful

for proving the existence of moments of the log-likelihood function and its derivatives. We

note that the contraction condition stated in A2 by its own is insufficient to ensure bounded

unconditional moments of ft in the DGP. Requiring the existence of moments typically makes

the admissible parameter space smaller. We also note that the existence of unconditional

moments of ft does not imply the same (un)conditional moments for xt. For instance, even

if ft has a finite 4th order moment, xt may not if ξt can reach levels higher than 1/4. We

have the following result.

Theorem 2. Consider the model as defined by (2) and (3), and let A1 and A2 be true. If
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in addition

E

[
sup
f

∥∥∥∥∥
r∏
i=1

Φ̇t−i (ft−i; θ0)

∥∥∥∥∥
p]
< 1, (14)

for some p ≥ 1, then the unique stationary and ergodic solution {f̃t}t∈Z to the SRE in (11)

satisfies E[‖f̃t‖p] <∞.

Web Appendix C.2 provides the proof of Theorem 2. Again, Theorem 2 makes use of

r-fold contraction conditions rather than the standard r = 1 case.

To give some insight into the size of the SE and moments regions, we compute them

numerically in Figure 2. We let two (out of the six) parameters in Θ vary at a time.

Computing the regions is far from trivial. It requires numerically solving a maximization

problem embedded inside an integration problem. As a result, the maximization problem

has to be solved for every value of the integration variable. Details are provided in Web

Appendix D.

Figure 2 clearly illustrates the importance of multiple unfoldings of the SRE. If only r = 1

iteration is used, the SE and finite-moments regions are typically small, or even empty; see

for instance the small darkest blue region in panel 3a for r = 1, or the fact that panel

3d only shows contracting behavior for r ≥ 17 iterations given the empirical estimates. For

r = 1, empirical estimates typically lie outside the SE region. However, by iterating the SRE

forward, the SE and finite-moments regions grow considerably to the extent that they also

encompass the empirical estimates. For instance, the model may not be SE when evaluated

at the empirical estimates for r = 1. For r = 20, 40, or even larger, however, the model’s

SE region at the empirical estimates increases such that even 4th order moments of ft exist.

Given the S&P500 data (on which Figure 2 is based) are at a daily frequency, we conclude

that a time-varying parameter model may not have guaranteed contraction properties at the

daily frequency, but may still have such contraction properties at a monthly (r = 22) or lower

frequency. The numerical results in the figure stress that analytical conditions for SE, as

often encountered in the literature for r = 1, may be quite uninteresting if not accompanied

by a numerical check for the size of the resulting parameter space.
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Figure 2: Stationarity and Moments regions

Top row: the combinations of aξ and bξ that satisfy A2 (left panel), and (14) for p = 2 (middle
panel) and p = 4 (right panel), for an increasing number of iterations r ≥ 1. Bottom row: similar,
but for combinations of aδ and bδ instead. Other deterministic parameters for each panel are fixed
at their empirical estimates for S&P500 returns; see Section 4.1.
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(d) SE region in (aδ, bδ)
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2.3 Parameter estimation

Observation-driven time series models such as (1) – (10) have the appealing feature that

the log-likelihood is known in closed form. For a given set of time series observations xt =

1{yt > τt} · (yt − τt) for t = 1, . . . , T , the vector of unknown parameters θ can then be

estimated by maximizing the log-likelihood function of the GPD with respect to θ. The

average log-likelihood function is given by

L (θ|FT ) =
1

T ∗

T∑
t=1

1{xt > 0} · ln p(xt; δt, ξt)

=
1

T ∗

T∑
t=1

1{xt > 0} ·
[
− ln(δt)−

(
1 +

1

ξt

)
ln

(
1 + ξt

xt
δt

)]
, (15)

where T ∗ =
∑T

t=1 1{xt > 0} is the number of POT values in the sample. Maximization of

(15) can be carried out using a conveniently chosen quasi-Newton optimization method.

To establish consistency and asymptotic normality of the maximum likelihood estimator

16



(MLE), we define the MLE θ̂ as

θ̂ := arg max
θ∈Θ

L (θ|FT ) . (16)

We establish these asymptotic properties by showing that the conditions for Lemma 1 in

Jensen and Rahbek (2004) are satisfied. The main point to note is that the first three

derivatives of the log-likelihood function (and of ft) with respect to θ are stationary and

ergodic stochastic recurrence equations that satisfy specific moment conditions. We make

the following additional assumption on the parameter space Θ.

Assumption 3. The parameter vector θ ∈ Θ for a compact parameter space Θ ⊂ R6, and

the true parameter vector θ0 ∈ int(Θ). Additionally, for each θ ∈ Θ, the starting value

f0(θ) = (ln (ξ0) , ln (δ0))′ ∈ R2 is fixed to the true value.

Finally, we impose conditions on the score vector ∇t, as defined in (4), and its deriva-

tives up to third-order. Let ∇t(θ), ∇2
t (θ) and ∇3

t (θ) denote the score vector and first two

derivatives with respect to f ξt (θ) and f δt (θ), evaluated at some θ ∈ V (θ0), where V (θ0) de-

notes a small neighborhood of the true parameter vector θ0. By imposing the conditions in

Assumption 4 below, we can rule out explosive behavior of the first three derivatives of the

log-likelihood function with respect to θ. Similar boundedness assumptions have been used

in for instance Hetland et al. (2023) or Hafner and Wang (2023). Effectively, this further

reduces the size of the parameter space (see also Blasques et al., 2022). Web Appendix E.1

provides the explicit analytic expressions for each of these derivatives.

Assumption 4. The score vector ∇t(θ), and its derivatives ∇2
t (θ), and ∇3

t (θ) are p-dominated

uniformly in V (θ0) and t by dominating functions D1,t, D2,t and D3,t, respectively, such that

sup
θ∈V (θ0)

‖∇t(θ)‖ ≤ D1,t, sup
θ∈V (θ0)

∥∥∇2
t (θ)

∥∥ ≤ D2,t, and sup
θ∈V (θ0)

∥∥∇3
t (θ)

∥∥ ≤ D3,t,

where D1,t, D2,t, and D3,t are p-integrable uniformly in t for p > 0, that is ‖D1,t‖p ≤ ∆1 <∞,

‖D2,t‖p ≤ ∆2 <∞, and ‖D3,t‖p ≤ ∆3 <∞.

The following theorem establishes the asymptotic properties of our MLE.
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Theorem 3. Consider the model as defined by (2) and (3). Let Assumptions 1–3 hold true.

Then θ̂
P−→ θ0 as T ∗ →∞.

If, in addition, Assumption 4 holds true, as well as the contraction condition (14) in Theo-

rem 2 for p = 4, then
√
T ∗
(
θ̂ − θ0

)
⇒N

(
0,Ω−1

I

)
as T ∗ →∞, where ΩI denotes the Fisher

information matrix evaluated at the true parameter vector θ0.

The proof of Theorem 3, together with detailed derivations of the derivatives up to the

third-order of the log-likelihood function L(θ|FT ), and of the (bivariate) score-driven process

{ft(θ)}t∈Z, for each θ ∈ Θ can be found in Web Appendix E.2.

All our results are conditional on the time-varying thresholds τt. The parameters aτ and

bτ for τt in (9) cannot be estimated using (15). Another objective function is needed in this

case. We suggest using the average quantile regression check function of Koenker (2005,

Ch. 3). The optimization problem can be formulated as

min
{aτ , bτ}

1

T

T∑
t=1

ρκ (yt − τt) ⇐⇒ min
{aτ , bτ}

1

T

T∑
t=1

(yt − τt) (κ− 1{yt < τt})

⇐⇒ max
{aτ , bτ}

1

T

T∑
t=1

(yt − τt) ((1− κ)− 1{yt > τt}) , (17)

where ρκ(ut) = ut (κ− 1{ut < 0}), and τt evolves as in (9). See also Engle and Manganelli

(2004) and Catania and Luati (2023) for the use of this objective function in a different

dynamic context. In practice, we estimate all thresholds τt via (17) before maximizing (15).

2.4 Confidence bands for tail shape and tail scale

Given the maximum likelihood estimate θ̂, confidence (or standard error) bands around

f̂t = ft(θ̂) allow us to visualize the impact of estimation uncertainty. Quantifying the un-

certainty of the estimated parameter paths is important, as classical EVT estimators of

time-invariant tail shape parameters can have sizeable standard errors; see e.g. Hill (1975)

and Huisman et al. (2001). Web Appendix F explains how simulation-based and in-sample

analytic confidence bands around f̂t can be obtained. These bands are conditional on the

estimated time-varying thresholds τ̂t, and do not incorporate the associated estimation un-

18



certainty of the thresholds.

2.5 Market risk measures

Market risk measurement is a major application of EVT methods in practice; see e.g. McNeil

et al. (2010). The GPD approximation (1)–(2) yields useful closed-form estimators of the

VaR and ES for high upper quantiles γ > G(τt | Ft−1); see McNeil and Frey (2000) and

Rocco (2014). We can estimate the 1 − γ tail probability of yt based on the GPD cdf for

xt, obtaining VaRγ(yt | Ft−1, θ) = τt + δtξ
−1
t

[(
1−γ
t∗/t

)−ξt
− 1

]
, where t∗ is the number of

observations with xt > 0 up to time t, i.e., the number of ys for s = 1, . . . , t for ys > τs.

The conditional ES is the average conditional VaR in the tail across all quantiles γ (see

McNeil et al., 2010, Chapter 2), provided ξt < 1. The closed-form expression is ESγ(yt |

Ft−1, θ) = VaRγ(yt|Ft−1,θ)
1−ξt + δt−ξtτt

1−ξt , see Web Appendix G for a derivation of the equations.

Maximum likelihood estimators of the conditional VaR and conditional ES can be obtained

by inserting filtered estimates of ξt and δt into the VaR and ES equations, respectively.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our dynamic EVT model to simultaneously recover (i)

the time variation in tail shape and tail scale parameters ξt and δt, (ii) EVT-based market risk

measures VaRγ(yt; τt, ξt, δt) and ESγ(yt; τt, ξt, δt) at high confidence levels such as γ = 99%,

and (iii) parameter estimates and their standard errors for all deterministic parameters

collected in θ. We do so using two sets of data generating processes (DGPs). The first set

of DGPs is discussed in the main text, while the second set of DGPs is discussed in Web

Appendix H. In our experiments, we track the performance of our score-driven modeling

approach when putting it into a variety of challenging settings, such as when the conditional

density is only approximately correct, the time-varying parameter process is misspecified or

features (near)-unit roots, and/or when both tail parameters follow similar paths. We also
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investigate whether the market risk estimates that follow from the model are reliable.

In our first set of DGPs, we consider D = 2 different densities (GPD and Student’s t),

P = 4 different parameter paths for tail shape and scale, and H = 3 different ways to obtain

the appropriate thresholds τt. This yields 2 × 4 × 3 = 24 simulation experiments. In each

experiment, we draw S = 100 univariate simulation samples of length T = 25, 000. We focus

on the upper 1− κ = 5% tail. As a result, approximately 25, 000 · 0.05 = 1, 250 observations

are available in each simulation to compute informative POTs xt > 0.

We first simulate yt from a GPD(α−1
t , σt) distribution with time-varying tail shape α−1

t

and scale σt. In a second set-up, we consider a Student’s t distribution with time-varying

scale σt and degrees of freedom αt. In the GPD case, our score-driven model uses the exact

conditional density for xt, while in the t case the GPD conditional density for xt is only

approximately correct (given finite thresholds τt in any given sample); see Web Appendix B.

We consider four different paths for the tail shape α−1
t and scale σt parameters. For both

the GPD and Student’s t densities we consider

(1) Constant: α−1
t = 0.5, σt = 1;

(2) Sine and constant: α−1
t = 0.5 + 0.3 sin(4πt/T ), σt = 1;

(3) Slow sine and frequent sine: α−1
t = 0.5 + 0.3 sin(4πt/T ), σt = 1 + 0.5 sin(16πt/T );

(4) Synchronized sines: α−1
t = 0.5 + 0.3 sin(4πt/T ), σt = 1 + 0.5 sin(4πt/T ).

Consequently, paths (1) considers the special case of time-invariant tail shape and scale

parameters. Naturally, we would want our dynamic framework to cover constant parameters

as a special case. Paths (2) allows the tail shape to vary considerably between 0.2 and

0.8, while keeping the scale (volatility) of the data constant. Paths (3) stipulates that both

parameters vary over time. Finally, paths (4) considers the case of synchronized variation in

both parameters.

Next, we consider three ways to construct the thresholds τt. First, we use the true time-

varying 95%–quantile based on our knowledge of the true density and of αt and σt. This

constitutes an infeasible best benchmark. Second, we construct τt as the 95%–quantile of

the expanding window of data up to time t, i.e. τt = Q0.95
1:t ({y1, . . . , yt}). Finally, we use the
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recursive specification (9), initialized at the full-sample quantile τ1 = Q0.95
1:T .

Our main evaluation metric for evaluating model performance is the root mean squared

error RMSE = 1
S

∑S
s=1

√
1
T

∑T
t=1(ξ̂st − ξ̄st )2, where ξ̂st is the estimated tail shape parameter

in simulation s, ξ̄st is the corresponding (pseudo-)true tail shape, s = 1, . . . , S denotes the

simulation run, and t = 1, . . . , T is the number of observations in each draw. The RMSE

for the tail scale parameter δt is obtained analogously. The pseudo-true values ξ̄st and δ̄st

are obtained by numerically minimizing the Kullback-Leibler divergence between the GPD

and the data generating process beyond the true time-varying 95% quantile τt. As the

true conditional density is known at all times in a simulation setting, these pseudo-true

benchmarks are easily computed numerically for each s and t. Particularly the GPD tail

scale parameter δ̄t may have very different dynamics from σt, as it combines dynamics in αt

and σt via the EVT limiting expression in (1); see also Section 2.1.4.

3.2 Simulation results

For the first set of DGPs, we are particularly interested in two issues: first, what is the effect

of increasing misspecification by moving from a GPD to a Student’s t density in the data

generating process of yt, and second, how accurately can we recover high-confidence market

risk measures when the conditional GPD density is only approximately correct.

Table 1 presents the corresponding results. It reports RMSE statistics for tail shape ξ̂t

and tail scale δ̂t. Figure 4 provides a representative example of the simulation outcomes

where we compare median estimated parameter paths for ξ̂t, δ̂t, V̂aR
0.99

, and ÊS
0.99

to their

(pseudo)-true values. Full results are found in Web Appendix H.1. The true parameters in

Figure 4 follow Path 3 from Section 3.1, and time-varying thresholds are estimated based on

the recursive specification (9) and objective function (17).

We focus on three main findings. First, all models seem to work well in recovering the

true underlying ξt and δt dynamics. The median estimates in Figure 4 tend to be close to

their (pseudo)-true values. The full results in in Web Appendix H.1 confirm this. Even

the highly non-linear patters of δt are recovered well. The model also captures the peaks of

ξt, which correspond to the episodes with the fattest tails. The model needs some time to
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Table 1: RMSE outcomes for DGP1

Root mean squared error (RMSE) statistics for two different distributions (GPD and t, in columns) and
for four different parameter paths for tail shape ξt and tail scale δt (paths (1) – (4), in rows). Thresholds
τt, τ̂t, and τ̂∗t denote, respectively, i) the infeasible true time-varying threshold, ii) the empirical quantile
associated with an expanding window of observations y1, . . . , yt, and iii) the estimated conditional quantile
using (17) and a suitably calibrated aτ = 0.25 to speed up the computations. We consider 100 simulations
for each DGP, and a time series of 25, 000 observations in each simulation. Model performance is measured
by the RMSE from the true ξ̄t and δ̄t in each draw.

Model GPD(τt) GPD(τ̂t) GPD(τ̂∗t ) t(τt) t(τ̂t) t(τ̂∗t )
(infeasible) (infeasible)

RMSE ξ̂t
(1) 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
(2) 0.171 0.177 0.178 0.182 0.188 0.189

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(3) 0.182 0.188 0.189 0.190 0.197 0.197

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(4) 0.177 0.186 0.183 0.188 0.195 0.192

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

RMSE δ̂t
(1) 0.005 0.014 0.068 0.005 0.010 0.034

(0.003) (0.006) (0.013) (0.002) (0.004) (0.006)
(2) 1.646 1.774 1.753 0.580 0.589 0.588

(0.034) (0.040) (0.036) (0.013) (0.012) (0.013)
(3) 2.421 2.913 2.813 0.836 0.960 0.924

(0.054) (0.054) (0.049) (0.015) (0.020) (0.017)
(4) 2.608 2.904 2.844 0.925 0.970 0.964

(0.057) (0.059) (0.059) (0.020) (0.020) (0.022)

recognize that the extreme tail has become more benign, i.e., that ξt has gone down. The

good fit is corroborated by Table 1. We also note that both estimation methods for τt only

loose about 10% RMSE for ξt and δt compared to the use of the true (infeasible) τt.

Second, when comparing the results for ξt and δt based on the recursive estimate τ̂t and

the dynamic estimate τ ∗t of Patton et al. (2019), Table 1 shows differences are mostly small

and insignificant. If there is no time-variation (Path 1), the estimates of δ̂t based on a

recursive τ̂t fare slightly better (as expected). The converse is true for if the true parameters

vary over time (Paths 2–4).

Third, Figure 4 shows that EVT-based market risk measures such as high-confidence

level (γ = 0.99) VaRs and ESs tend to be estimated sufficiently accurately with our dynamic

EVT approach. Again, this is confirmed by the full results in Web Appendix H.1. Both
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Figure 4: Simulation results: an example

Time series data is here generated as yt ∼t(0, σt, αt), where α−1
t = 0.5 + 0.3 sin(4πt/T ) and σt = 1 +

0.5 sin(16πt/T ). This is Path 3 in Section 3.1. Pseudo-true parameter values are reported in solid red. The
four panels report estimates of ξt, δt, VaRt, and ESt, respectively. Median filtered values are plotted in solid
black. The first two panels also indicate the lower 5% and upper 95% quantiles of the estimates (black dots).
The time-varying threshold τ̂t is estimated based on the recursive specification (9) in conjunction with the
objective function (17).
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the low and high frequency dynamics of VaR and ES are captured well. There only appears

some under-estimation of the ES at its highest peak, where tails are extremely fat. Overall,

we conclude that the model captures the dynamics of the tails accurately, even in cases

where the model does not coincide with the true, unobserved data generating process and

the model is thus misspecified.

We conclude this section by briefly summarizing the main simulation results from our

second set of DGPs in Web Appendix H.2. Empirical estimates of the autoregressive param-

eters bξ and bδ can be close to one; see Section 4. For this reason, we investigate the effect of

(near-)unit root type dynamics and of additional covariates on the parameter estimates and

their standard errors. We find that models with (near-)unit root type dynamics continue to

work reliably. The estimated δ̂, ξ̂t, and δ̂t continue to be closely aligned to their true values.

The usual asymptotic standard error estimates based on the inverse Hessian or sandwich

estimates, however, are not always reliable then. In our set-up, these common estimates of

the standard errors are typically too large, providing too conservative inference. A bootstrap

procedure tailored to integrated processes could then be used to avoid this issue.3

3See for instance Boswijk et al. (2021).
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4 Empirical illustrations

4.1 Equity log-returns

To illustrate our approach, we obtain end-of-day prices for the S&P500 index and for IBM

stock as two easily and publicly available series from the CRSP database.4 The S&P500

data range from July, 3 1962 to December, 31 2020, yielding 14,726 daily observations. The

IBM stock data range from January 2, 1926 to December 31, 2020, yielding 25,028 daily

observations. To model the adverse left tail of equity log-returns we consider negative log-

returns yt = −100×(ln pt− ln pt−1), with pt the price level, before applying our methodology.

4.1.1 Deterministic parameter estimates

We rely on the time-variation in the thresholds τt to accommodate time-variation in any pa-

rameters describing the center of the distribution. The thresholds evolve over time according

to (9), at (1 − κ) = 10%, and are initialized at τ1 = q̂0.9, the 90% empirical quantile of yt.

The factor process ft = (ln ξt, ln δt)
′ is initialized at f1 = (I2 −B)−1 ω.

The first two columns in Table 2 present our estimates of the deterministic parameters

of model (1) – (9). The estimates of aτ > 0 and bτ < 1 suggest that the thresholds are

time-varying and mean-reverting. Parameters aξ and aδ are statistically significant at any

reasonable significance level, for both S&P500 and IBM. These parameters can be interpreted

as the average size of the scores driving ln ξt and ln δt, respectively; see the statements above

equation (5). Parameters bξ and bδ are estimated to be close to one for both series, implying

that shocks to each time-varying parameter die out only slowly. A numerical check reveals

that the deterministic parameters aξ and bξ lie within the SE region implied by the sufficient

conditions of Theorems 1 and 2. A diagnostic check in Web Appendix J suggests that the

bivariate filter (3) is also invertible at these estimates.

4Web Appendix I provides two additional illustrations to other asset classes: exchange rates (GBP/USD)
and commodities (Brent crude oil).
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Table 2: Parameter estimates

Parameter estimates for the dynamic tail shape model. The second and third columns refer to the first
application (equity log-returns of the S&P500 index and IBM stock). The estimation samples range from 3
July 1962 to 31 December 2020 for the S&P500 index, and from 2 January 1926 to 31 December 2020 for
IBM stock. The remaining columns refer to the second application (changes in sovereign yields). Columns
labeled IT 5y and PT 5y refer to yield changes for Italy and Portuguese five-year benchmark bonds sampled
at the 15-minute frequency. The estimation samples range from 4 January 2010, 9AM, to 31 December
2012, 5PM. For the second application, bξ and bδ are estimated indistinguishably different from, but still
slightly below one. To be in line with theory, we fix the coefficients slightly below 1 at 0.9997a for a = 1/32,
such that at a daily (8 hours = 32 quarters) the coefficient is comparable to the highest IBM coefficient,
bξ. Standard error estimates are in round brackets, p-values are in square brackets. Standard errors and
p-values are based on a sandwich covariance matrix estimator for the first application, and on a bootstrap
procedure for the second application.

First illustration Second illustration
S&P500 IBM IT 5y yield PT 5y yield

aξ 0.025 0.018 0.018 0.023 0.028 0.028
(0.01) (0.00) (0.003) (0.002) (0.003) (0.004)
[0.00] [0.00] [0.000] [0.000] [0.000] [0.000]

aδ 0.112 0.088 0.079 0.076 0.092 0.089
(0.01) (0.01) (0.003) (0.003) (0.004) (0.004)
[0.00] [0.00] [0.000] [0.000] [0.000] [0.000]

bξ 0.9993 0.9997 0.9997a 0.9997a 0.9997a 0.9997a

(0.00) (0.00)
[0.00] [0.00]

bδ 0.995 0.994 0.9997a 0.9997a 0.9997a 0.9997a

(0.001) (0.001)
[0.00] [0.00]

cξ -7.696 -47.855
(2.225) (22.555)
[0.001] [0.034]

cδ 0.144 -10.782
(0.737) (4.323)
[0.845] [0.013]

λ 0 0 0.911 0.911 0.911 0.911
aτ 0.241 0.260 0.221 0.221 0.773 0.773
bτ 0.989 0.990 0.999 0.999 0.998 0.998
cτ 0.017 0.017 -0.141 -0.141

T 14,726 25,028 24,416 24,416 24,576 24,576
T ∗ 1,495 2,532 2,448 2,448 2,490 2,490

loglik -22,028.4 -62,727.4 -80,535.8 -80,513.9 -196,068.0 -196,031.0
AIC 44,068.7 125,466.9 161,079.7 161,039.8 392,143.9 392,074.0
BIC 44,114.3 125,515.7 161,112.1 161,088.4 392,176.3 392,122.7

25



4.1.2 Tail parameter estimates

Figure 5 presents the raw log-returns (top panels) along with filtered estimates of ξt and δt

(middle and bottom panels). The filtered tail shape varies between approximately 0.05 and

0.25 for the S&P 500 index, and between approximately 0.05 and 0.35 for IBM. The filtered

tail scales vary roughly between 0.2 and 2.0 for the S&P 500 and IBM. The confidence bands

around each filtered parameter suggest that both are reasonably precisely estimated, and

that the tail shape parameter is often far from zero. The reported confidence bands are

conditional on the estimated thresholds τ̂t.

The filtered estimates of ξt and δt suggest that one-off, extremely negative returns affect

the filtered tail shape more than the filtered tail scale. Longer-lasting crises, by contrast,

appear to affect the tail scale more than the tail shape. For example, the stock market crash

on October 19, 1987, also known as “Black Monday,” considerably increases ξ̂t but not δ̂t.

Similarly, the 2010 “flash-crash” on May 6, 2010 increases ξ̂t more than δ̂t. By contrast, the

global financial crisis between 2008 and 2009, and the Covid-19 pandemic recession in early

2020, both temporarily increase δ̂t while leaving ξ̂t less affected.

Figure 5 also plots estimates of VaRt and ESt at a 99% confidence level. We checked that

indeed 1.0% of the log-returns lie beyond V̂aRt in the case of the S&P 500 index (0.9% for

IBM stock). The average value of −yt conditional on it exceeding its VaR is -3.54% for the

S&P 500, and -4.85% for IBM. These values are approximately in line with the time series

average of ÊSt at -3.12% for the S&P 500, and -4.59% for IBM, respectively.

4.2 Changes in sovereign yields

In our second application we illustrate the inclusion of explanatory variables in the dynamics

of ξt and δt as in equation (8). To do so, we study whether there was any tail risk impact

of central bank asset purchases on changes in Italian (IT) and Portuguese (PT) five-year

bond yields between 2010 and 2012. Both Italy and Portugal were in the “epicenter” of the

existential euro area sovereign debt crisis at that time; see e.g. Eser and Schwaab (2016),

and Ghysels et al. (2017). Italy is an example for a large euro area country that was
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Figure 5: Filtered tail parameters for S&P500 (left) and IBM (right) log-returns

Top panels: daily log-returns for the S&P500 index (left) and IBM common stock (right). Middle and
bottom panels: filtered tail shape (ξt, middle) and tail scale (δt, bottom) parameters. The thresholds τt
are reported at a 90% confidence level; Value-at-Risk (VaR) and Expected Shortfall (ES) are plotted at an
extreme 99% confidence level (top panels). The thresholds τt, VaR, and ES are mirrored at the horizontal
axis to correspond to log-returns (instead of percentage losses). The estimation samples range from July 3,
1962 to December, 31 2020 for the S&P500 index, and from January, 2 1926 to December, 31 2020 for the
IBM stock. The reported samples range from July 3, 1962 to December, 31 2020.
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affected by the crisis relatively late (in mid-2011), and that benefited from Eurosystem bond

purchases only during a relatively short period of time, between August 2011 and March

2012. Portugal, by contrast, is an example for a smaller euro area country that was affected

relatively early (already in 2010), and that benefited from Eurosystem bond purchases more

uniformly over time, between May 2010 and March 2012.

Eurosystem bond purchases undertaken during the sovereign debt crisis predominantly

targeted the one- to ten-year maturity bracket, with the five-year maturity approximately

in the middle of that spectrum; see e.g. Eser and Schwaab (2016). We consider the impact

on five-year sovereign benchmark bond yields for this reason.

The bond yields yt are sampled at the 15-minute frequency, between 9AM and 5PM,

and are obtained from Bloomberg. We do not consider overnight changes in yield, such that

the first 15-minute interval covers 9AM to 9:15AM. Our sample ranges from 04 January

2010 to 31 December 2012. This yields 32 intra-daily observations per trading day, with

T ≈ 3× 260× 32 ≈ 25, 000 observations per country.

Finally, we construct time series data zt of country-specific bond purchases at the high

(15-minute) frequency. Observations zt contain all sovereign bond purchases at par (nominal)

value between t−1 and t for the respective country, not only purchases of the five-year bench-

mark bond. Disaggregated data on Eurosystem SMP purchases sampled at a high-frequency

are still confidential at the time of writing. At the end of our sample, the Eurosystem held

e99.0 bn in Italian sovereign bonds and e21.6 bn in Portuguese bonds; see the ECB Annual

Report 2013. We including these as an additional conditioning variable in (8) to see whether

they mitigated extreme tail behavior or not.

4.2.1 Deterministic parameter estimates

We continue to rely on the time-variation in the thresholds τt to control for time-variation

in any parameters describing the center of the distribution. The thresholds now evolve

according to (10), also taking account of the SMP purchases zt. We choose (1− κ) = 10%,

and initialize τ1 = q̂0.9, the 90% empirical quantile of yt.

Analyzing changes in the tail shape and tail scale parameters for high-frequency data
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Figure 6: The tail shape and tail scale estimates

Top row: Five-year sovereign benchmark bond yields for Italy (IT, left column) and Portugal (PT, right
column) between 2010 and 2012. Middle row: filtered tail shape (ξt) parameter. Bottom row: filtered tail
scale (δt) parameter. Standard error bands are simulated at a 95% confidence level.
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is challenging given the high persistence of parameters at such frequencies. We therefore

introduce two simplifications. First, we fix the smoothing parameter λ at 0.051/32 ≈ 0.911,

such that 95% of the smoothing materializes within one day (i.e., 32 15-minute intervals).

As there are only log-likelihood contribution for the GPD for xt = zt − τt > 0, it is hard to

identify λ empirically. Second, to keep the model in line with the theory from Section 2.2,

we fix bξ and bδ to a value close to the unit boundary, as otherwise they are estimated

indistinguishably different from 1. We choose (bξ)32 = (bδ)32 = 0.9997, which implies a

similar persistence level as (IBM) equity returns at a daily (= 8h = 32 quarters) frequency.

Fixing λ, bξ, or bδ at other reasonable values has little effect on the empirical findings.

Columns three to six of Table 2 present our estimates of the deterministic parameters for

the model (1) – (10). Columns three and five refer to a baseline model without central bank

purchases. Table 2 reports bootstrapped standard errors for the deterministic parameters

using the procedure outlined in Web Appendix K.

The estimates of aτ > 0 and bτ < 1 suggest that the thresholds are time-varying and

mean-reverting. Parameter cτ is estimated to be negative for Portuguese bonds, and close to

zero for Italian bonds. Parameters aξ and aδ suggest pronounced and statistically significant

time series variation in both the tail shape ξt and tail scale δt parameters, both of which

are captured by our time-varying parameter model. The impact parameters cξ and cδ of

bond purchases on tail shape and scale are estimated to be negative in both cases. The log-

likelihood increases by 21.9 points for IT, and 37.0 points for PT. A comparison of model

selection criteria (AIC, BIC) further supports the inclusion of central bank asset purchases

as a useful covariate to explain each time series’ extreme tail dynamics.

4.2.2 Tail parameter estimates and VaR impact

Figure 6 plots the corresponding filtered estimates for time-varying tail shape ξt and tail

scale δt. Time series variation is present and pronounced in both parameters. The filtered

tail shape varies between approximately 0.1 and 0.4 for Italian yields, and between 0.05 and

0.6 for Portuguese yields. The filtered tail scale varies between approximately 1 and 10.0

for Italian yields, and between approximately 1 and 40 for Portuguese yields. The standard
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error bands around each time-varying parameter suggest that both parameters are estimated

reasonably precisely, and that the tail shape is often far from the Gumbel case of ξt = 0.

As was clear from Table 2, the coefficients cξ and cδ measure the impact of bond purchases

on the tail behavior of yield changes. As these parameters are difficult to interpret by

themselves, we show in Web Appendix L how they can be translated into an impact on VaR

via their link to τt, δt, and ξt. For Italy, we obtain a total VaR impact of 0.0 (tail threshold)

+0.8 (tail scale) − 5.9 (tail shape) = −5.1 bps for a e1 bn Eurosystem intervention. For

Portugal, we obtain a larger impact of −0.1 (tail threshold) − 172.5 (tail scale) − 176.4 (tail

shape) = −349.0 bps. These point estimates are of course subject to substantial estimation

uncertainty; see Table 2. The 95% confidence intervals for VaR impact can be bootstrapped

along with the parameters. They equal [−17.6, 11.6] for IT and [−664.0, −38.8] for PT. The

stronger impact for Portugal than for Italy is likely due to a e1 bn intervention constituting

a larger share of the overall market.

5 Conclusion

We introduced a semi-parametric modeling framework to study time variation in tail pa-

rameters for long univariate time series. To this end we modeled the time variation in the

shape and scale parameters of the Generalized Pareto Distribution, which approximates

the tail of most heavy-tailed densities used in econometrics and the actuarial sciences. We

discussed the handling of non-tail time series observations, inference on deterministic and

time-varying parameters, and how to relate tail variation to observed covariates if such vari-

ables are available. We also established conditions for stationarity and ergodicity of the

model and conditions for consistency and asymptotic normality of the maximum likelihood

estimator. The model therefore complements and extends recent work based on different

methodologies, such as the non-parametric approach to tail index variation of de Haan and

Zhou (2021), the time-varying quantile (and ES) approaches of Patton et al. (2019) and

Catania and Luati (2023), and the parametric approach of Massacci (2017). We applied the

model to study variation in the left tail of U.S. equity log-returns, and in the right tail of
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changes in euro area sovereign bond yields at a high frequency. In the latter case we also

studied the impact of Eurosystem bond purchases, concluding that these had a beneficial

impact on tail parameters, leaning against the risk of extremely adverse market outcomes.

Evidently, our model for time-varying tail parameters is focussed on capturing marginal

features. In many applications it may also be of interest to study the time-varying nature of

joint extremes; see e.g. Castro-Camilo et al. (2018), Escobar-Bach et al. (2018), and Mhalla

et al. (2019). In terms of our first illustration, for example, one could wonder whether

extremely negative log-returns for the S&P 500 and IBM stock were more dependent at

certain points in time. We leave such research for future work (see also Lucas et al., 2014;

Oh and Patton, 2018; Hautsch and Herrera, 2020).
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A Appendix: GPD score and scaling functions

A.1 The GPD score function

This section derives the score (4). Recall the GPD pdf as

p(xt; δt, ξt) =
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

.

with log-likelihood contribution

lt = ln p(xt; δt, ξt) = − ln(δt)−
(
1 +

1

ξt

)
ln

(
1 + ξt

xt
δt

)
,

where δt > 0, ξt > 0, and xt > 0. Using ξt = exp (f1t), the first element of the score is obtained as

∇1t =
∂l(xt; δt, ξt)

∂f1t
=

∂l(xt; δt, ξt)

∂ξt
· dξt

df1t
,

∂l(xt; δt, ξt)

∂ξt
=

1

ξ2t
ln

(
1 + ξt

xt
δt

)
−
(
1 +

1

ξt

)
xt

δt + ξtxt
,

dξt
df1t

= exp (f1t) = ξt.

Similarly, for δt = exp (f2t), the second element of the score is obtained as

∇2t =
∂l(xt; δt, ξt)

∂f2t
=

∂l(xt; δt, ξt)

∂δt
· dδt

df2t
,

∂l(xt; δt, ξt)

∂δt
=

xt − δt
δt(δt + ξtxt)

,

dδt
df2t

= exp (f2t) = δt.

Combining the two, the unscaled score vector is given by

∇t =

 1
ξt
ln
(
1 + ξt

xt
δt

)
−
(
1 + 1

ξt

)
ξtxt

δt+ξtxt

xt−δt
δt+ξtxt

 .
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A.2 The GPD scaling matrix

This section derives the scaled score (6). To this end we require the [2 × 2] conditional Fisher

information matrix associated with (4),

It = E[∇t∇′
t | Ft−1; ft, θ] =

I(11)
t I(12)

t

I(21)
t I(22)

t

 . (A.1)

We derive each element in turn.

Element I(11)
t

We recall that the score is zero in expectation if the model is well-specified; see Creal et al. (2013).

This implies

∫ ∞

0

1

ξ2t
ln

(
1 + ξt

xt
δt

)
p(xt; δt, ξt)dxt =

∫ ∞

0

(
1 +

1

ξt

)
xt

δt + ξtxt
p(xt; δt, ξt)dxt. (A.2)

The top left element of the conditional Fisher information matrix is

I(11)
t = E

[
−
(
∂l(xt; δt, ξt)

∂ξt

)2(dξt
dft

)2

| Ft−1

]
= E

[
−∂2l(xt; δt, ξt)

∂ξ2t
| Ft−1

]
exp (2ft),

where the last equality uses the fact that ft is fixed for given Ft−1. The expected negative second

derivative is given by

E
[
−∂2l(xt; δt, ξt)

∂ξ2t
| Ft−1

]
= −

∫ ∞

0

[(
1 +

1

ξt

)
x2t

(δt + ξtxt)2
+

2

ξ2t

xt
δt + ξtxt

− 2

ξ3t
ln

(
1 + ξt

xt
δt

)]
p(xt; δt, ξt)dxt

= −
∫ ∞

0

[(
1 +

1

ξt

)
x2t

(δt + ξtxt)2
+

2

ξ2t

xt
δt + ξtxt

− 2

ξt

(
1 +

1

ξt

)
xt

δt + ξtxt

]
p(xt; δt, ξt)dxt

= −
∫ ∞

0

[(
1 +

1

ξt

)
x2t /δ

2
t

(1 + ξtxt/δt)2
− 2

ξt

xt/δt
1 + ξtxt/δt

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −
∫ ∞

0

[(
1 + ξt
ξ3t

)
ξ2t x

2
t /δ

2
t

(1 + ξtxt/δt)2
− 2

ξ2t

ξtxt/δt
1 + ξtxt/δt

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −1 + ξt
ξ4t

∫ ∞

1
(ut − 1)2u

−1/ξt−3
t dut +

2

ξ3t

∫ ∞

1
(ut − 1)u

−1/ξt−2
t dut, (A.3)
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where we used (A.2) in the second line, and where the last equality comes from a change of variable

substituting ut = 1 + ξtxt/δt.

It is straightforward to check that

∫ ∞

1
(ut − 1)2u

−1/ξt−3
t dut =

2ξ3t
(1 + ξt)(1 + 2ξt)

,∫ ∞

1
(ut − 1)u

−1/ξt−3
t dut =

ξ2t
(1 + ξt)(1 + 2ξt)

,∫ ∞

1
(ut − 1)u

−1/ξt−2
t dut =

ξ2t
1 + ξt

.

Combining terms yields

I(11)
t =

2

(1 + 2ξt)(1 + ξt)
exp (2f1t) =

2ξ2t
(1 + ξt)(1 + 2ξt)

.

Element I(22)
t

The bottom right element of the conditional information matrix is given by

I(22)
t = E

[
−
(
∂l(xt; δt, ξt)

∂δt

)2( dδt
df2t

)2

| Ft−1

]
= E

[
−∂2l(xt; δt, ξt)

∂δ2t
| Ft−1

]
exp (2f2t).

The expectation term is given by

E
[
−∂2l(xt; δt, ξt)

∂δ2t
| Ft−1

]
= −

∫ ∞

0

[
1/δ2t − 2xt/δ

3
t − ξtx

2
t /δ

4
t

(1 + ξtxt/δt)2

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

= −
∫ ∞

0

1

δ3t

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt +
∫ ∞

0

2

δ3t

xt
δt

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt +
∫ ∞

0

ξt
δ3t

x2t
δ2t

(
1 + ξt

xt
δt

)− 1
ξt
−3

dxt

= − 1

ξtδ2t

∫ ∞

1
u
−1/ξt−3
t dut +

2

ξ2t δ
2
t

∫ ∞

1
(ut − 1)u

−1/ξt−3
t dut +

1

ξ2t δ
2
t

∫ ∞

1
(ut − 1)2u

−1/ξt−3
t dut

= − 1

δ2t (1 + 2ξt)
+

2

δ2t (1 + ξt)(1 + 2ξt)
+

2ξt
δ2t (1 + ξt)(1 + 2ξt)

=
1

δ2t (1 + 2ξt)
, (A.4)

such that

I(22)
t =

1

1 + 2ξt
.
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Elements I(12)
t and I(21)

t

The top right and bottom left elements of the conditional information matrix are given by

I(12)
t = I(21)

t = E
[
−∂2l(xt; δt, ξt)

∂ξt∂δt
| Ft−1

]
exp (f1t + f2t).

The derivation proceeds along similar lines as before,

E
[
−∂2l(xt; δt, ξt)

∂ξt∂δt
| Ft−1

]
= −

∫ ∞

0

[
−xt/ξt

δ2t + ξtxtδt
+ (1 + ξt)

xt/ξt
(δt + ξtxt)2

]
1

δt

(
1 + ξt

xt
δt

)− 1
ξt
−1

dxt

=
1

ξ3t δt

∫ ∞

1
(ut − 1)u

−1/ξt−2
t dut −

1

ξ3t δt

∫ ∞

1
(ut − 1)u

−1/ξt−3
t dut −

1

ξ2t δt

∫ ∞

1
(ut − 1)u

−1/ξt−3
t dut

=
1

ξtδt(1 + ξt)
− 1

ξtδt(1 + 2ξt)

=
1

δt(1 + ξt)(1 + 2ξt)
. (A.5)

As a result,

I(12)
t = I(21)

t =
ξt

(1 + ξt)(1 + 2ξt)
.

The scaling matrix

Collecting all elements I(11)
t – I(22)

t we obtain the conditional Fisher information matrix as

It =

 2ξ2t
(1+ξt)(1+2ξt)

ξt
(1+ξt)(1+2ξt)

ξt
(1+ξt)(1+2ξt)

1
1+2ξt

 ,

such that I−1
t = LtL

′
t for

Lt =

1 + ξ−1
t 0

−1
√
1 + 2ξt

 .

A.3 The GAS(2,1) dynamics for EWMA scheme

Specification (7) leads to a specification for ft as in

(
I2 −B L

)
(1− λ)−1

(
1− λL

)
ft+1 = ω +Ast,

5



where L is the lag operator, such that ft follows the score-driven dynamics in (3) with p = 2 and

q = 1, also known as GAS(2,1) dynamics. To see this, first rewrite the first equation in (7) as

(I2 −B L)ft+1 = ω +As̃t,

and then multiply both sides by (1− λL)/(1− λ), using the second equation in (7)

(1− λL)s̃t = (1− λ)st.

to replace (1− λL)s̃t/(1− λ) by st.
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B Tail approximation for heavy-tailed random variables

B.1 Tail approximation for GPD random variables

Let yt ∼ GPD(α−1
t , σt) be the data generating process (DGP) with F (yt) = 1− (1 + yt/(αtσt))

−αt

as its cdf. Let τt be a threshold. In this case, the tail approximation is exact, as we have

Gξt,δt,τ (yt) = P [Yt ≤ yt + τt | Yt > τt]

=
F (yt + τt)− F (τt)

1− F (τt)

= 1− (1 + (yt + τt)/(αtσt))
−αt

(1 + τt/(αtσt))−αt

= 1−
(
1 + τt/(αtσt) + yt/(αtσt)

1 + τt/(αtσt)

)−αt

= 1−
(
1 +

yt

αt(σt + α−1
t τt)

)−αt

= 1− (1 + ξtyt/δt)
−1/ξt , (B.1)

for ξt = α−1
t and δt,τt = σt + α−1

t τt. The EVT GPD tail ‘approximation’ has the same tail

as the original GPD, but a higher scale parameter σt + τt/αt rather than σt. This is intuitive,

as the GPD beyond a high threshold has a flatter tail than at the origin. The scale parameter

δt,τt = σt + α−1
t τt increases with the threshold τt, varies positively with the tail shape parameter

α−1, and, importantly, should not be expected to provide a consistent estimate of σt. If σt were

time-invariant (for example because pre-volatility-filtered data were modeled empirically), then the

estimate δt,τt may still vary over time to reflect time-variation in αt.

B.2 Tail approximation for Student’s t random variables

Let yt ∼ t(0, σ2
t , αt) be the data generating process with f(yt) the pdf of a Student’s t distribution

with zero mean, scale σ2
t , and αt degrees of freedom. Let τt ∈ R be a threshold.

In the simulations, we minimize the Kullback-Leibler divergence between the Student’s t tail

and the GPD tail approximation. Analytically, we can use the following approximate solution. The

rate of tail decline in the extreme tail of the Student’s t and the GPD should coincide, implying a

tail shape of ξ−1
t = αt. For the scale, we equate the slope at the origin of the GPD with that of

7



the Student’s t at τt and obtain

δ−1
t,τt =

f(τt)

1− F (τt)

τt→∞
≈ −f ′(τt)

f(τt)
=

∂ − ln f(τt)

∂τt
=

(1 + α−1
t )τt/σ

2
t

1 + τ2t /(αtσ2
t )

=
(1 + αt)τt
αtσ2

t + τ2t
⇔

δt,τt ∼
αtσ

2
t

(1 + αt)τt
+

τt
1 + αt

,

which again depends on αt and increases in τt. For large τt, δt,τt varies inversely with αt, or

positively with ξt = α−1
t . As a result, we should not expect δt to coincide with σt.

8



C Proof of stationarity, ergodicity and moments of ft

and xt

C.1 Proof of Theorem 1

From the cdf of the GPD, together with Assumption 1, we know that for a standard uniform ut

and for a standard exponentially-distributed ϵt, we have

ut = 1− (1 + ξtxt/δt)
−ξ−1

t ⇔

− ln(1− ut) = ϵt = ξ−1
t · ln (1 + ξtxt/δt) ⇒

exp(ξtϵt) = 1 + ξtxt/δt.

Filling this out into the scaled score expressions evaluated at θ0 ∈ Θ, we get

sξt = ξ−2
t (1 + ξt) ln (1 + ξtxt/δt) +

1− (1 + 3ξ−1
t + ξ−2

t )ξtxt/δt
1 + ξtxt

= ξ−1
t (1 + ξt) ϵt +

1− (1 + 3ξ−1
t + ξ−2

t )(exp(ξtϵt)− 1)

exp(ξtϵt)

= (1 + ξ−1
t ) ϵt + exp(−ξtϵt)− (1 + 3ξ−1

t + ξ−2
t )(1− exp(−ξtϵt))

and

sδt =
√
1 + 2ξt

xt − δt
δt + ξtxt

=
√
1 + 2ξtξ

−1
t

ξtxt/δt
1 + ξtxt/δt

−
√

1 + 2ξt
1

1 + ξtxt/δt

=
√

1 + 2ξtξ
−1
t

exp(ξtϵt)− 1

exp(ξtϵt)
−
√
1 + 2ξt

1

exp(ξtϵt)

=
√
1 + 2ξtξ

−1
t (1− exp(−ξtϵt))−

√
1 + 2ξt exp(−ξtϵt).

Now, in order to apply Theorem 3.1 of Bougerol (1993), we first verify the required log-moment

conditions for our bivariate score-driven process {ft}t∈Z. We recall that from (11), ft+1 = Φt (ft; θ0),
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where

Φt (ft; θ0) =

 ωξ

ωδ

+

 aξ 0

0 aδ

 sξt

sδt

+

 bξ 0

0 bδ

 f ξ
t

f δ
t

 , (C.1)

such that, by using Lemma 2.2 of Straumann and Mikosch (2006) for any fixed f0 ∈ R2, we obtain

E
[
ln+ ∥Φt (f0; θ0)− f0∥

]
≤2 ln 2 + ln+

∥∥∥∥∥∥ ωξ

ωδ

∥∥∥∥∥∥+ ln+

∥∥∥∥∥∥ aξ 0

0 aδ

∥∥∥∥∥∥+ E

ln+
∥∥∥∥∥∥ sξt

sδt

∥∥∥∥∥∥


+ ln+

∥∥∥∥∥∥ bξ − 1 0

0 bδ − 1

∥∥∥∥∥∥+ ln+

∥∥∥∥∥∥ f ξ
0

f δ
0

∥∥∥∥∥∥ .
It therefore suffices to verify that the scaled score vector st has a finite log-moment. We have that

E

ln+
∥∥∥∥∥∥ sξt

sδt

∥∥∥∥∥∥
 ≤ E

ln+
∥∥∥∥∥∥ (1 + ξ−1

0 ) ϵt + exp(−ξ0ϵt)− (1 + 3ξ−1
0 + ξ−2

0 )(1− exp(−ξ0ϵt))
√
1 + 2ξ0ξ

−1
0 (1− exp(−ξ0ϵt))−

√
1 + 2ξ0 exp(−ξ0ϵt)

∥∥∥∥∥∥
 < ∞,

since ξ0 ∈ R+ is a fixed real-valued point and, by Assumption 1, we already know that the process

ϵt is i.i.d. and follows an exponential distribution with unit scale. Hence, we conclude that the

required log-moment conditions are satisfied.

Second, we show how the contraction condition in Assumption 2 is derived. For our bivariate

process {ft}t∈Z it is easy to have the analytical form of the random matrix Φ̇t (ft; θ0), which

can be retrieved by directly taking the first partial derivatives of the mapping in equation (C.1)

with respect to
(
f ξ
t , f

δ
t

)′
∈ R2. Moreover, to motivate the imposed contraction condition for this

theorem, we repeatedly substitute the stationary and ergodic f̃t = Φt

(
f̃t; θ0

)
and get

f̃t = Φt

(
f̃t; θ0

)
= Φ

(
ϵt, f̃t; θ0

)
= Φ(ϵt,Φt−1 (Φt−2 (. . . , θ0) , θ0) , θ0) . (C.2)

Using the chain rule, we then obtain

∂Φt (ft; θ0)

∂f ′
t−r

=
r−1∏
i=1

Φ̇t−i (ft−i; θ0)
∂Φt−r (ft−r, θ0)

∂f ′
t−r

=
r∏

i=1

Φ̇t−i (ft−i; θ0) .

By Assumption 2, there exist some sufficiently large r ≥ 1 number after which the bivariate process

{ft}t∈Z is contracting. Therefore, by the mean value theorem together with Assumption 2, it follows
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that

∥∥∥ft − f̃t

∥∥∥ =

∥∥∥∥Φ(ϵt,Φt−1 (Φt−2 (. . . ,Φt−r (ft−r, θ0) , θ0) , θ0) , θ0)

− Φ
(
ϵt,Φt−1

(
Φt−2

(
. . . ,Φt−r

(
f̃t−r, θ0

)
, θ0

)
, θ0

)
, θ0

)∥∥∥∥
≤

∥∥∥∥∥
r∏

i=1

Φ̇t−i

(
f̄t−i; θ0

)∥∥∥∥∥ ∥∥∥ft−r − f̃t−r

∥∥∥ ,
where f̄t is on the chord between ft and f̃t. Then, as shown in Theorem 3.1 of Bougerol (1993),

using Assumption 2 we have∥∥∥∥∥
r∏

i=1

Φ̇t−i

(
f̄t−i; θ0

)∥∥∥∥∥ e.a.s.−−−→ 0, r → ∞,

and since E
[
ln+

∥∥∥ft − f̃t

∥∥∥] = E
[
ln+

∥∥∥Φt−1 (ft−1; θ0)− f̃t

∥∥∥] < ∞ for any ft ∈ R2 as proved above,

it follows that
∥∥∥ft − f̃t

∥∥∥ e.a.s.−−−→ 0 by a straightforward application of Lemma 2.1 of Straumann and

Mikosch (2006). Finally, the stationarity and ergodicity of xt then follows easily from Krengel

(2011) and the fact that

xt = ξ−1
t δt · (exp(ξtϵt)− 1) .

This proves the theorem.

C.2 Proof of Theorem 2

Consider the mapping in equation (C.1). By the Minkowsky’s inequality and the mean value

theorem, we have

∥Φt (ft, θ0)∥p ≤
∥∥∥Φt (ft, θ0)− Φt

(
f̃t, θ0

)∥∥∥p + ∥∥∥Φt

(
f̃t, θ0

)∥∥∥p
=
∥∥∥Φ̇t

(
f̄t, θ0

) (
Φt−1 (ft−1, θ0)− Φt−1

(
f̃t−1, θ0

))∥∥∥p + ∥∥∥Φt

(
f̃t, θ0

)∥∥∥p ,
11



where f̄t is on the chord between ft and f̃t. Therefore, by similar arguments as the ones used in

the proof of Theorem 1, we get

∥Φt (ft, θ0)∥p ≤

∥∥∥∥∥
r∏

i=1

Φ̇t−i

(
f̄t−i−1; θ0

)∥∥∥∥∥
p

×
∥∥∥(Φt−i−1 (ft−i−1, θ0)− Φt−i−1

(
f̃t−i−1, θ0

))∥∥∥p + ∥∥∥Φt

(
f̃t, θ0

)∥∥∥p .
Using the condition stated in (14), we can then take expectations and write for all r ≥ 1

E [∥Φt (ft, θ0)∥p] ≤βE
[∥∥∥Φt−r−1 (ft−r−1, θ0)− Φt−r−1

(
f̃t−r−1, θ0

)∥∥∥p]+ E
[∥∥∥Φt

(
f̃t, θ0

)∥∥∥p] (C.3)

≤βt−rE
[∥∥∥Φ0 (f0, θ0)− Φ0

(
f̃0, θ0

)∥∥∥p]+ t−r∑
j=1

βj−1E
[∥∥∥Φt

(
f̃t−j+1, θ0

)∥∥∥p] . (C.4)

Since from (14) we have β ∈ (0, 1), the first term on the right-hand side of the inequality in (C.3)

converges to 0 as t → ∞. Moreover, we note that
{
Φt

(
f̃t−j+1, θ0

)}
t∈Z

is stationary and ergodic,

and hence, the right-hand side of the inequality in (C.3) will eventually converge as t → ∞ if and

only if E [∥Φ0 (f0, θ0)∥p] < ∞ for any fixed f0 ∈ R2. It is also easy to see that, as f0 ∈ R2 is a fixed

point, and the moments bound E [∥Φ0 (f0, θ0)∥p] < ∞ is implied by E [∥s0∥p] < ∞. We thus have

E


∥∥∥∥∥∥ sξ0

sδ0

∥∥∥∥∥∥
p ≤ E


∥∥∥∥∥∥ (1 + ξ−1

0 ) ϵ0 + exp(−ξ0ϵ0)− (1 + 3ξ−1
0 + ξ−2

0 )(1− exp(−ξ0ϵ0))
√
1 + 2ξ0ξ

−1
0 (1− exp(−ξ0ϵ0))−

√
1 + 2ξ0 exp(−ξ0ϵ0)

∥∥∥∥∥∥
p < ∞,

which directly follows from the fact that ξ0 ∈ R+ is fixed, and that ϵ0 is i.i.d. and exponentially

distributed with unit scale, as implied by Assumption 1.

This proves the theorem.

12



D Numerically computing SE and finite-moments re-

gions

To compute the SE and finite-moments regions in Figure 2, we proceed as follows. First, we fix

the deterministic parameters at θ̂, one of the empirical estimates, and vary only two of its elements

over a finely grained mesh of points. Second, for each of these points on the mesh, we approximate

the expectation by a Monte Carlo average. For this, we generate a long sequence of N i.i.d. unit

exponential random variables and construct fi,r = fi,r(f, ϵi, . . . , ϵi+r−1, θ̂) as the r-th forward iterate

of

fi,r = ω +B1fi,r−1 +A1 ·


(1 + ξ−1

i,r ) · ϵi+r−1 +
1−(1+3ξ−1

i,r +ξ−2
i,r )(exp(ξi,rϵi+r−1)−1)

exp(ξi,rϵi+r−1)

√
1 + 2ξi,r

ξ−1
i,r (exp(ξi,rϵi+r−1)−1)−1

exp(ξi,rϵi+r−1)



= ω +B1fi,r−1 +A1 ·


(1 + ξ−1

i,r ) · ϵi+r−1 + e−ξi,rϵi+r−1 − (1 + 3ξ−1
i,r + ξ−2

i,r ) ·
(
1− e−ξi,rϵi+r−1

)
√

1 + 2ξi,r

(
ξ−1
i,r − (1 + ξ−1

i,r ) · e−ξi,rϵi+r−1

)
 ,

with fi,r = (ln ξi,r, ln δi,r)
′, the deterministic parameters set to the values in θ̂, and every fi,r starting

from the same initial fi,0 ≡ f . This SRE corresponds to the DGP and is optained by substituting

xt = δ · ξ−1
t · (exp(ξtϵt) − 1) into (7). Note that the score part in this DGP SRE expression no

longer depends on δi,r.

For every i = 1, . . . , N − r + 1 and every r = 1, . . . , rmax, we then compute the maximum of

∥∥∥∥∥∥
r∏

j=1

Φ̇i+j−1

(
fi,j−1; θ̂

)∥∥∥∥∥∥
with respect to the initial value f . The optimization is carried out numerically using a bivariate

grid of f values, yielding the maximizer f̂i,r. This is repeated for every mesh point for θ̂. Finally,

we determine the smallest number r̂ such that

r̂ = min

r = 1, . . . , rmax

∣∣∣∣∣∣ 1

N − r + 1

N−r+1∑
i=1

ln

∥∥∥∥∥∥
r∏

j=1

Φ̇i+j−1

(
f̂i,r; θ̂

)∥∥∥∥∥∥ < 0

 ,
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or

r̂ = min

r = 1, . . . , rmax

∣∣∣∣∣∣ 1

N − r + 1

N−r+1∑
i=1

∥∥∥∥∥∥
r∏

j=1

Φ̇i+j−1

(
f̂i,r; θ̂

)∥∥∥∥∥∥
p

< 1

 ,

depending on whether we want to visualize the SE or the finite-moments region.

The plot is then the contour plot of r̂.

The matrix products of Φ̇ can be numerically unstable for small values of ξt. To resolve these

instabilities, we substitute the analytical expressions in these cases by Taylor-series expansions of

exp(−ξtεt), combining terms and removing terms of the order ξat for a < 0 that cancel. Only

afterwards, we then compute the numerical result. As a cutoff, we take ξt < 10−5. Around this

point, the numerical calculations with or without the approximation give the same results.
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E Consistency and Asymptotic Normality of the MLE

In this appendix, we first derive the partial derivatives of the log-likelihood function and our

score-driven process up to third-order. We then discuss the proof for consistency and asymptotic

normality of the MLE.

E.1 Derivatives of the log-likelihood function

For a generic θ =
(
(θξ)′, (θδ)′

)′, where θξ =
(
ωξ, aξ, bξ

)
and θδ =

(
ωδ, aδ, bδ

)
, denote with IN ∈

RN×N the N ×N identity matrix and KNN the commutation matrix.

We first recall that the log-likelihood function evaluated at θ ∈ Θ is defined as

L(θ|FT ) =
1

T ∗

T∑
t=1

(
− ln (δt(θ))−

(
1 +

1

ξt(θ)

)
ln

(
1 + ξt(θ)

xt
δt(θ)

))
.

Then, by direct calculations, we obtain the score vector

∂L(θ|FT )

∂θ
=

1

T ∗

T∑
t=1

(
∂ft(θ)

(∂θ)′

)′
∇t =

1

T ∗

T∑
t=1

∇ξ
t (θ)

∂ft(θ)
∂θξ

∇δ
t (θ)

∂ft(θ)
∂θδ

 , (E.1)

where

∇t(θ) =

∇ξ
t (θ)

∇δ
t (θ)

 =

ξ−1
t (θ) ln

(
1 + ξt(θ) δ

−1
t (θ)xt

)
−
(
1 + ξ−1

t (θ)
) ξt(θ)xt

δt(θ)+ξt(θ)xt

xt−δt(θ)
δt(θ)+ξt(θ)xt

 . (E.2)

We also have the Hessian matrix

∂2L(θ|FT )

(∂θ)(∂θ)′
=

1

T ∗

T∑
t=1

((
∂ft(θ)

(∂θ)′

)′
∇2

t (θ)
∂ft(θ)

(∂θ)′
+
(
∇t(θ)

′ ⊗ I6
) ∂ vec

(∂θ)′

(
∂ft(θ)

(∂θ)′

))
(E.3)

=
1

T ∗

T∑
t=1

∇ξξ
t (θ)

∂fξ
t (θ)

(∂θξ)

∂fξ
t (θ)

(∂θξ)′
+∇ξ

t (θ)
∂2fξ

t (θ)

(∂θξ)(∂θξ)′
∇ξδ

t (θ)
∂fξ

t (θ)

(∂θξ)

∂fδ
t (θ)

(∂θδ)′
+∇ξ

t (θ)
∂2fξ

t (θ)

(∂θξ)(∂θδ)′

∇δξ
t (θ)

∂fδ
t (θ)

(∂θδ)

∂fξ
t (θ)

(∂θξ)′
+∇δ

t (θ)
∂2fδ

t (θ)

(∂θδ)(∂θξ)′
∇δδ

t (θ)
∂fδ

t (θ)

(∂θδ)

∂fδ
t (θ)

(∂θδ)′
+∇δ

t (θ)
∂2fδ

t (θ)

(∂θδ)(∂θδ)′

 ,

15



with

∇2
t (θ) =

∇ξξ
t (θ) ∇ξδ

t (θ)

∇δξ
t (θ) ∇δδ

t (θ)

 , (E.4)

=

 (δt(θ)−ξt(θ)δt(θ)+2ξt(θ)xt)xt

(δt(θ)+ξt(θ)xt)
2 − ξ−1

t (θ) ln
(
1 + ξt(θ)δ

−1
t (θ)xt

)
ξt(θ)xt

δt(θ)−xt

(δt(θ)+ξt(θ)xt)
2

ξt(θ)xt
δt(θ)−xt

(δt(θ)+ξt(θ)xt)
2 − (1 + ξt(θ))

δt(θ)xt

(δt(θ)+ξt(θ)xt)
2

 .

Additionally, the third-order derivatives of the log-likelihood function can be expressed as

∂ vec ∂2L(θ|FT )

(∂θ)′(∂θ)(∂θ)′
=

∂ vec

(∂θ)′

(
∂2L(θ|FT )

(∂θ)(∂θ)′

)
:= Qt(θ), (E.5)

where matrix Qt(θ) ∈ R12×6 collects the third-order derivatives of the log-likelihood function. A

typical element of the matrix Qt(θ) is given by Qkkk
t (θ), for k ∈ {ξ, δ}, and takes the form

Qkkk
t (θ) =∇kkk

t (θ) vec

(
∂fk

t (θ)

(∂θk)

∂fk
t (θ)

(∂θk)′

)
∂fk

t (θ)

(∂θk)′
+∇kk

t (θ) vec

(
∂2fk

t (θ)

(∂θk)(∂θk)′

)
∂fk

t (θ)

(∂θk)′
(E.6)

+∇kk
t (θ) (I6 +K66)

(
∂fk

t (θ)

(∂θk)
⊗ I6

)
∂2fk

t (θ)

(∂θk)(∂θk)′
+∇k

t (θ)
∂ vec

(∂θk)′

(
∂2fk

t (θ)

(∂θk)(∂θk)′

)
,

where

∇ξξξ
t (θ) = ξ−1

t (θ) ln
(
1 + ξt(θ)δ

−1
t (θ)xt

)
−
(
δ2t (θ) + ξ2t (θ)xt (3xt − δ) + δt(θ)ξt(θ) (δt(θ) + 2xt)

)
xt

(δt(θ) + ξt(θ)xt)
3 ,

∇δδδ
t (θ) = (1 + ξt(θ))

δt(θ)xt (δt(θ)− ξt(θ)xt)

(δt(θ) + ξt(θ)xt)
3 ,

∇ξξδ
t (θ) = ∇ξδξ

t (θ) = ξt(θ)xt
(δt(θ)− xt) (δt(θ)− xtξt(θ))

(δt(θ) + ξt(θ)xt)
3 ,

∇δξδ
t (θ) = ∇δδξ

t (θ) = −ξt(θ)xt
δt(θ) (δt(θ)− xt (2 + ξt(θ)))

(δt(θ) + ξt(θ)xt)
3 .
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Derivatives of the score-driven recursions

In the log-likelihood derivatives above, we also need the derivative of the score-driven recursions.

These are given by

∂ft+1(θ)

(∂θ)′
= Φ̇(ft(θ); θ)

∂ft(θ)

(∂θ)′
+ Ut(θ), Ut(θ) =

(
I2 ; ft(θ)

′ ⊗ I2 ; st(θ)
′ ⊗ I2

)
, (E.7)

and

∂2ft+1(θ)

(∂θ)(∂θ)′
= Φ̇(ft(θ); θ)

∂2ft(θ)

(∂θ)(∂θ)′
+

∂ft(θ)

(∂θ)

∂Φ̇(ft(θ); θ)

(∂θ)′
+

∂Ut(θ)

(∂θ)′
. (E.8)

Alternatively, by using the vectorization operator, we can also write the second derivative recursions

as

∂ vec

(∂θ)′

(
∂ft+1(θ)

(∂θ)′

)
=
(
I6 ⊗ Φ̇(ft(θ); θ)

) ∂ vec

(∂θ)′

(
∂ft(θ)

(∂θ)′

)
+

((
∂ft(θ)

(∂θ)′

)′
⊗ I2

)
∂ vec

(∂θ)′

(
Φ̇(ft(θ); θ)

)
+

∂ vec

(∂θ)′
(Ut(θ)) .

Finally, we observe that the third-order derivatives of the score-driven process are

∂ vec

(∂θ)′

(
∂2ft+1(θ)

(∂θ)(∂θ)′

)
:= St(θ),

where the matrix St(θ) collects the third-order derivatives of the score-driven recursion ft(θ). A

typical element of this matrix is given by Skkk
t (θ), for k ∈ {ξ, δ}. Using i, j, l to denote the different

elements in the parameter vector θ, it is easy to see that each term is given by Skkk
t (θ) =

∂3fk
t (θ)

∂θki ∂θ
k
j ∂θ

k
l

,

which takes the form of

∂3fk
t+1(θ)

∂θki ∂θ
k
j ∂θ

k
l

=Φ̇(fk
t (θ); θ)

∂3fk
t (θ)

∂θki ∂θ
k
j ∂θ

k
l

+
∂Φ̇(fk

t (θ); θ)

∂θkj

∂2fk
t (θ)

∂θki ∂θ
k
l

+
∂Φ̇(fk

t (θ); θ)

∂θkl

∂2fk
t (θ)

∂θi∂θkj
(E.9)

+
∂2Φ̇(fk

t (θ); θ)

∂θkj ∂θ
k
l

∂fk
t (θ)

∂θki
+

∂2Uk
i,t(θ)

∂θkj ∂θ
k
l

∂fk
t (θ)

∂θki
.
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E.2 Proof of Theorem 3

From the derivative processes up to third-order of the (bivariate) score-driven process {ft(θ)}t∈Z

given by equations (E.7)–(E.9) above, it is easy to see that each of these follows an SRE of similar

form as the one defined in (11) of the main paper, for each θ ∈ Θ. Hence, when evaluated at the

true parameter vector θ0, the contraction condition given in (12) of Assumption 2 ensures e.a.s.

convergence to a strictly stationary and ergodic solution as a direct consequence of our Theorem

1. Under Assumption 3, we therefore directly obtain the consistency result of the MLE in (i)

by a straightforward application of Lemma 1 of Jensen and Rahbek (2004). More formally, the

consistency and asymptotic normality in Jensen and Rahbek (2004) follows under the following

assumptions:

Assumption 1.

( i) As T ∗ → ∞,
√
T ∗ ∂L(θ0|FT )

∂θ
D⇒ N(0,ΩS), with ΩS > 0 and T ∗ =

∑T
t=1 1 {xt > 0} is the

number of POT values in the sample.

( ii) As T ∗ → ∞, ∂2L(θ0|FT )
∂θ∂θ′

P→ ΩI , with ΩI > 0.

( iii) maxi,j,l=1,2,3 supθ∈V (θ0)

∣∣∣∂3L(θ|FT )
∂θi∂θj∂θl

∣∣∣ < cT , where V (θ0) denotes a neighbourhood of θ0 and cT

is some stochastic sequence that satisfies 0 ≤ cT < c for 0 < c < ∞.

In order to prove the asymptotic normality of the MLE in (ii), we first note that by the

contraction condition in (14) of Theorem 2, both the score vector in (E.1) and the first derivative

process in (E.7) evaluated at θ0 satisfy the required Lindeberg condition necessary to apply Brown

(1971)’s CLT for martingales. Hence we get that

√
T ∗∂L(θ0|FT )

∂θ
⇒N(0,ΩS), ΩS := E

[
∂L(θ0|FT )

∂θ

∂L(θ0|FT )

∂θ′

]
,

as T ∗ → ∞, such that (A.1) in Lemma 1 of Jensen and Rahbek (2004) is satisfied.

Furthermore, it is also clear that, under the same assumptions, the Hessian matrix in (E.3) and

the second derivative process in (E.8) evaluated at θ0 are strictly stationary and ergodic with the

appropriate number of bounded moments, such that a direct application of the ergodic theorem
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implies that

−∂2L(θ0|FT )

(∂θ)(∂θ′)

P−→ −E
[
∂2L(θ0|FT )

(∂θ)(∂θ′)

]
:= ΩI ,

as T ∗ → ∞, such that also (A.2) in Lemma 1 of Jensen and Rahbek (2004) is satisfied. Here we

remark that the Fisher information matrix equality ΩS = ΩI follows because, under the maintained

assumptions, our model is correctly specified. As a result, the conditional density in (2) evaluated

at θ0 and xt satisfies

p(xt; δt, ξt; θ0) = δ−1
t (θ0) ·

(
1 + ξt(θ0)

xt
δt(θ0)

)−ξ−1
t (θ0)−1

,

and is the true density. The log-likelihood function L(θ0|FT ) is twice continuously differentiable

and has a bounded moment, which allows us to interchange integration with differentiation.

We are only left with the final condition (A.3) in Lemma 1 of Jensen and Rahbek (2004), which

essentially requires the boundedness of third-order derivatives of the log-likelihood function in a

small neighbourhood of the true parameter θ0. However, to check this condition, we note from

(E.5) that it suffices to show that

E

[
sup

θ∈V (θ0)
∥Qt(θ)∥

]
= E

[
sup

θ∈V (θ0)

∥∥∥∥∂ vec ∂2L(θ|FT )

(∂θ)′(∂θ)(∂θ)′

∥∥∥∥
]
< ∞.

Taking into account that the general element of Qt(θ) has the form given in (E.6), repeated appli-

cation of the cr-inequality yields for k ∈ {ξ, δ} that

E

[
sup

θ∈V (θ0)

∥∥∥Qkkk
t (θ)

∥∥∥] ≤ c1E

[
sup

θ∈V (θ0)

∣∣∣∇kkk
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)

∥∥∥∥3
]

+ 3c2E

[
sup

θ∈V (θ0)

∣∣∣∇kk
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂2fk
t (θ)

(∂θk)(∂θk)′

∥∥∥∥ sup
θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)′

∥∥∥∥
]

+ c3E

[
sup

θ∈V (θ0)

∣∣∣∇k
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fk

t (θ)

(∂θk)(∂θk)′

)∥∥∥∥
]
. (E.10)

Now, consider the first term in the right-hand side of inequality (E.10), and choose r > 1 such that
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3r ≤ 3 + 3γ for some γ > 0. Then, using Hölder’s inequality with r−1 + s−1 = 1, we get

E

[
sup

θ∈V (θ0)

∣∣∣∇kkk
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)

∥∥∥∥3
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkk
t (θ)

∣∣∣s]}1/s{
E

[
sup

θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)

∥∥∥∥3r
]}1/r

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kkk
t (θ)

∣∣∣s]}1/s{
E

[
sup

θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)

∥∥∥∥3+3γ
]}3/(3+3γ)

.

Similarly, for the second term in the right-hand side of inequality (E.10), we first apply Hölder’s

inequality, and then the Cauchy-Schwartz inequality, to obtain

E

[
sup

θ∈V (θ0)

∣∣∣∇kk
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂2fk
t (θ)

(∂θk)(∂θk)′

∥∥∥∥ sup
θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)′

∥∥∥∥
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kk
t (θ)

∣∣∣1+γ
]}1/(1+γ)

×

{
E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂2fk
t (θ)

(∂θk)(∂θk)′

∥∥∥∥(1+γ)/γ

sup
θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)′

∥∥∥∥(1+γ)/γ
]}γ/(1+γ)

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇kk
t (θ)

∣∣∣1+γ
]}1/(1+γ)

×

{
E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂2fk
t (θ)

(∂θk)(∂θk)′

∥∥∥∥2(1+γ)/γ
]}γ/(2+2γ){

E

[
sup

θ∈V (θ0)

∥∥∥∥∂fk
t (θ)

(∂θk)′

∥∥∥∥2(1+1γ)/γ
]}γ/(2+2γ)

.

Finally, the third (and last) term in the right-hand side of inequality (E.10) can be bounded in a

similar way, since

E

[
sup

θ∈V (θ0)

∣∣∣∇k
t (θ)

∣∣∣ sup
θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fk

t (θ)

(∂θk)(∂θk)′

)∥∥∥∥
]

≤

{
E

[
sup

θ∈V (θ0)

∣∣∣∇k
t (θ)

∣∣∣1+γ
]}1/(1+γ){

E

[
sup

θ∈V (θ0)

∥∥∥∥ ∂ vec

(∂θk)′

(
∂2fk

t (θ)

(∂θk)(∂θk)′

)∥∥∥∥(1+γ)/γ
]}γ/(1+γ)

.

To conclude the proof, we note that by using Assumption 4, it follows that there exist a universal

constant 0 < c < ∞ which we can use to upper-bound the inequality in (E.10), and thus verify
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that

E

[
sup

θ∈V (θ0)
∥Qt(θ)∥

]
≤ E

[
max

i,j,k=1,2,3
sup

θ∈V (θ0)

∣∣∣∣ ∂3L(θ|FT )

(∂θi)′(∂θj)(∂θl)′

∣∣∣∣
]
≤ c < ∞.

We thus establish that condition (A.3) required for Lemma 1 of Jensen and Rahbek (2004) also

holds true. Together, (A.1) – (A.3) imply the asymptotic normality of the MLE θ̂.
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F Confidence bands for tail shape and tail scale

F.1 Simulation-based confidence bands

Given the maximum likelihood estimate θ̂, confidence (or standard error) bands around f̂t = ft(θ̂)

allow us to visualize the impact of estimation uncertainty. Quantifying the uncertainty of the

estimated parameter paths is important, as classical EVT estimators of time-invariant tail shape

parameters can have sizeable standard errors; see e.g. Hill (1975) and Huisman et al. (2001).

Our confidence bands are based on the variance of f̂t, which we denote by Vt = Var(f̂t). They

are conditional on the estimated paths of the dynamic thresholds τt. There exist two possible ways

to construct these bands. Delta-method-based bands can be devised using a linear approximation

of the non-linear transition function for ft, thus extending Blasques et al. (2016, Section 3.2) to

the case of multiple lags. We provide the equations in Web Appendix F.2 below. In our empirical

illustrations below, however, the linear approximations are typically insufficient to capture the

uncertainty in the highly non-linear and persistent dynamics of f̂t; compare Figure 1. As a result,

delta-method-based bands can become unstable. Therefore, we instead use simulation-based bands

as in Blasques et al. (2016, Section 3.3).

Simulation-based confidence bands build on the asymptotic normality of θ̂. In particular,

we draw S parameter values θ̂s, s = 1, . . . , S from the distribution N(θ̂, Ŵ ), where Ŵ is the

estimated covariance matrix of θ̂ as obtained via the sandwich covariance matrix estimator or via

a bootstrapping procedure. If the finite-sample distribution of θ̂ were known, that could be used

instead. For each draw θ̂s we run the filter f̂ s
t = ft(θ̂

s) for t = 1, . . . , T . This way, we obtain S time-

varying parameter paths f̂ s
t for s = 1, . . . , S and t = 1, . . . , T . These paths account automatically

for all non-linearities in the dynamics of ft. We obtain the pointwise simulated uncertainty bands

of f̂t by directly calculating the appropriate percentiles over the S draws of f̂ s
t at each t.

F.2 Analytic confidence bands

For completeness, this section provides the expressions needed for the calculation of analytic in-

sample confidence bands around the filtered time-varying parameters f̂t (θ). Such bands visualize

the impact of estimation uncertainty associated with θ̂ on the filtered estimates f̂t. Delta-method-

based bands are devised using a linear approximation of the non-linear transition function for ft.
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As a by-product of our derivation we show how to extend Blasques et al. (2016, Section 3.2) to the

case of a multivariate ft with multiple lags.

If the linear approximation is not appropriate for a given dataset at hand, however, then delta-

method-based bands can become unstable. This happens in our empirical application. In such

cases we recommend using simulation-based bands; see Sections 2.4 and 4.

Recall that ft = (f ξ
t , f

δ
t )

′, where ξt = exp(f ξ
t ), δt = exp(f δ

t ), and the transition equations as

ft+1 = ω +As̃t +Bft, (F.1)

s̃t = (1− λ)st + λs̃t,

where ω = (ωξ, ωδ)′, A = diag(aξ, aδ), B = diag(bξ, bδ), and st is given in (6).

In practice, some parameters may need to be restricted. Vector θ̄ = (ωξ, ωδ, aξ, aδ, bξ, bδ, λ)′ ∈

R7×1 collects all deterministic parameters of the model, while θ = (ωξ, ωδ, αξ, αδ, βξ, βδ, λuc)′ col-

lects all unconstrained parameters. The two are related, for example, through aξ = exp(αξ),

aδ = exp(αδ), bξ = Λ(βξ), bδ = Λ(βδ), λ = Λ(λuc), and where Λ(x) = (1 + exp(−x))−1 is the

logistic function. In this way, aξ, aδ > 0 and 0 < bξ, bδ, λ < 1. We proceed with these restrictions,

keeping in mind that some derivatives below would need to be adjusted when other restrictions

were chosen or some parameters were fixed (for example, ωξ = ωδ = 0 and bξ = bδ = 1 ).

Pre-multiplying the factor updating equation (F.1) by (1− λL) yields

(1− λL) ft+1 = (1− λL)ω + (1− λL)As̃t + (1− λL)Bft,

which implies

ft+1 = (1− λ)ω + (λI2 +B)ft − λBft−1 + (1− λ)Ast(xt, ft)

= φ(ft, ft−1; θ) ≡ φt+1 ∈ R2×1.

We assume that θ̂−θ0∼̇N (0,W ), where W is the asymptotic covariance matrix associated with
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θ̂. A first-order Taylor series expansion around θ0 yields

f̂t+1 − ft+1 ≈
∂φt+1

∂θ′0
×
(
θ̂ − θ0

)
+

∂φt+1

∂f ′
t

· dft
dθ′0

×
(
θ̂ − θ0

)
+

∂φt+1

∂f ′
t−1

· dft−1

dθ′0
×
(
θ̂ − θ0

)
=

[
∂φt+1

∂θ′0
+

∂φt+1

∂f ′
t

· dft
dθ′0

+
∂φt+1

∂f ′
t−1

· dft−1

dθ′0

]
×
(
θ̂ − θ0

)
= Gt+1 ×

(
θ̂ − θ0

)
(F.2)

∼ N
(
0, Gt+1WG′

t+1

)
,

where we defined
dft+1

dθ′
= Gt+1 =

∂φt+1

∂θ′
+

∂φt+1

∂f ′
t

· dft
dθ′

+
∂φt+1

∂f ′
t−1

· dft−1

dθ′
. (F.3)

Interestingly, (F.3) is a recursion in Gt+1 for given ∂φt+1

∂θ′ , ∂φt+1

∂f ′
t

, ∂φt+1

∂f ′
t−1

. Put differently, (F.3)

can be written as

Gt+1 =
∂φt+1

∂θ′
+

∂φt+1

∂f ′
t

·Gt +
∂φt+1

∂f ′
t−1

·Gt−1, (F.4)

which can be computed in parallel to the recursion for ft itself. We set G1 = G2 = 0 ∈ R2×7 (or to

other sensible values).

The derivative terms in recursion (F.4) can be derived as

∂φt+1

∂θ′
= (1− λ)

∂ω

∂θ′
− ω

∂λ

∂θ′

+

(1− λ)sξt
∂aξ

∂θ′

(1− λ)sδt
∂aδ

∂θ′

−Ast
∂λ

∂θ′
+ (1− λ)A

∂st
∂θ′

+ ft
∂λ

∂θ′
+

f ξ
t · ∂bξ

∂θ′

f δ
t · ∂bδ

∂θ′

−Bft−1
∂λ

∂θ′
− λ

f ξ
t−1 · ∂bξ

∂θ′

f δ
t−1 · ∂bδ

∂θ′

 , (F.5)

∂φt+1

∂f ′
t

= λI2 +B + (1− λ)A
∂st
∂f ′

t

, (F.6)

∂φt+1

∂f ′
t−1

= −λB,

where ∂st
∂θ′ = 0 (see (6)).
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The derivative terms needed in (F.5) are

∂ωξ

∂θ′
=
[
1 0 0 0 0 0 0

]
∂ωδ

∂θ′
=
[
0 1 0 0 0 0 0

]
∂aξ

∂θ′
=
[
0 0 exp(αξ) 0 0 0 0

]
∂aδ

∂θ′
=
[
0 0 0 exp(αδ) 0 0 0

]
∂bξ

∂θ′
=
[
0 0 0 0 Λ(βξ)[1− Λ(βξ)] 0 0

]
∂bδ

∂θ′
=
[
0 0 0 0 0 Λ(βδ)[1− Λ(βδ)] 0

]
∂λ

∂θ′
=
[
0 0 0 0 0 0 Λ(λuc)[1− Λ(λuc)]

]
,

where Λ(x) = (1 + exp(−x))−1 remains the logistic function. Finally, the expression ∂st
∂f ′

t
in (F.6)

can be derived as ∂st
∂f ′

t
= ∂st

∂(ξt,δt)′
· ∂(ξt,δt)

∂f ′
t

= ∂st
∂(ξt,δt)′

· diag(ξt, δt), where

∂sξt
∂ξt

=
ln
(
xtξt
δt

+ 1
)

ξ2t
+

xt

(
1
ξ2t

− 1
)

δt + xtξt
−

xt

(
δt − xt

(
ξt +

1
ξt
+ 3
))

(δt + xtξt)
2

−
2 ln

(
xtξt
δt

+ 1
)
(ξt + 1)

ξ3t
+

xt (ξt + 1)

δtξ2t

(
xtξt
δt

+ 1
) ,

∂sξt
∂δt

=
xt (ξt + 1) (2δt − xt)

δt(δt + xtξt)
2 ,

∂sδt
∂ξt

=
(δt − xt) (xt − δt + xtξt)

(δt + xtξt)
2√2ξt + 1

,

∂sδt
∂δt

= −xt
√
2ξt + 1 (ξt + 1)

(δt + xtξt)
2 .

The factor variance is given by Vt+1 = Var
(
f̂t+1|xt, ft, θ

)
= Gt+1WG′

t+1, evaluated at θ = θ̂.

In a standard fashion we obtain a asymptotic 95% confidence interval for f̂k,t+1 as

[
f̂k,t+1 − 1.96

√
Vkk,t+1, f̂k,t+1 + 1.96

√
Vkk,t+1

]
,

where k = 1, 2 indexes the respective element of f̂t+1 and matrix Vt+1. Asymmetric confidence

bands for (ξ̂t, δ̂t)
′ = exp(f̂t) can be obtained from the confidence bands for f̂t by exponentiation.
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G Derivation of EVT-based market risk measures

This section derives the conditional market risk measures in Section 2.5.

To derive the one-step-ahead VaR, we note that

G(yt) = 1−G(yt) = P(Yt > yt) = P(Yt > τt)P(Yt > yt|Yt > τt) = G(τt)F (xt),

where the third equality sign uses a standard conditioning argument, and xt = yt − τt. We can use

this result to obtain VaRγ(Yt | Ft−1, θ) = qγt (Yt) by setting

G(yt) = G(τt)F (xt) = 1− γ

⇐⇒ t∗

t
(1 + ξtδ

−1
t xt)

− 1
ξt = 1− γ

⇐⇒ (1 + ξtδ
−1
t (qγt (Yt)− τt)) =

(
1− γ

t∗/t

)−ξt

⇐⇒ qγt (Yt) = τt + δtξ
−1
t

[(
1− γ

t∗/t

)−ξt

− 1

]
,

where t∗/t serves as an estimator of G(τt). This expression coincides with the expression given in

the main text.

The Expected Shortfall ESγ(Yt) is given by

ESγ(Yt) =
1

1− γ

∫ 1

γ
qst (Yt)ds

=
VaRγ(yt | Ft−1, θ)

1− ξt
+

δt − ξtτt
1− ξt

,

which is derived by moving constant terms in front of the integral and noting that

∫ 1

γ
(1− s)−ξtds = (1− γ)1−ξt

1− ξt

for ξt < 1.
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H Simulation results

H.1 Additional figures for the first set of DGPs

This section presents two additional figures associated with our first simulation study in Section 3

(DGP1).

Figures H.1 and H.2 compare median estimated parameter paths for ξ̂t, ξ̂t, V̂aR
0.99

, and ÊS
0.99

to their (pseudo-)true values. Figure H.1 refers to simulations from a GPD conditional density

(Paths 1 – 4), for which the GPD conditional density is exact. Figure H.2 refers to simulations

from a Student’s t conditional density (Paths 1 – 4), for which the GPD conditional density is

only approximate for any finite value of τt < ∞. In the presence of misspecification, score updates

continue to minimize the local Kullback-Leibler divergence between the true conditional density

and the model-implied conditional density, and remain optimal in this sense; see Blasques et al.

(2015). The time-varying thresholds τt evolve according to (9) at a 1− κ = 5% tail probability.
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Figure H.1: Simulation results for GPD data

Simulation results for yt ∼ GPD(α−1
t , σt) with time-varying tail shape α−1

t and scale σt. Rows
refer to different parameter paths (1) – (4); see Section 3.2. Columns refer to filtered estimates
of ξt, δt, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red. Median
filtered values are reported in solid black. The first two columns also indicate the lower 5% and
upper 95% quantiles of filtered tail shape and tail scale estimates. The time-varying threshold τ̂t
is estimated based on the recursive specification (9) in conjunction with the objective function (17).
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Figure H.2: Simulation results for Student’s t data

Simulation results for yt ∼ t(0, , σt, α
−1
t ) with time-varying scale σt and tail shape α−1

t . Rows
refer to different parameter paths (1) – (4); see Section 3.2. Columns report filtered estimates of
ξt, δt, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red. Median filtered
values are reported in solid black. The first two columns also indicate the lower 5% and upper
95% quantiles of filtered estimates. The time-varying threshold τ̂t is estimated based on the
recursive specification (9) in conjunction with the objective function (17).
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H.2 The second set of DGPs

Simulation setup

Empirical estimates of the autoregressive parameters bξ and bδ can be close to one; see Section 4.

This section therefore investigates the effect of covariates and (near-)unit root type dynamics on

the time-varying parameter paths and the deterministic parameter estimates and their standard

errors in a second simulation design. Specifically, we simulate 100 samples from a GPD(xt; ξt, δt)

density, with T=25,000 observations each, thus abstracting from any misspecification effects. The

factor ft = (ln ξt, ln δt)
′ follows the transition equation

ft+1 = ω +Ast +Bft + Czt, (H.1)

where matrices ω, A, B, and C take four different sets of values. As a first case, we consider a slowly

mean-reverting factor process with ω = (0.50, 1.00)′, A = diag(0.03, 0.07), B = diag(0.98, 0.98),

and C = 0. The second case considers an integrated factor process: B = I2, while ω, A, and C

remain unchanged. A third and fourth case are identical to the first and second case, except that

now C = (−3,−1.5)′ in (8) for an observed variable zt. As our zt we use the central bank purchases

of Italian sovereign bonds as considered in our second application in Section 4.2.

Simulation results

We now turn to the simulation results for DGP2. Table H.1 presents RMSEs associated with

the time-varying parameters ξt and δt and the deterministic parameters aξ and aδ. We consider

two settings: with (bottom panel) and without (top panel) a covariate. Within each of these, we

consider a stationary (GAS) and unit root (iGAS) DGP (in columns), as well as the corresponding

model specifications (in rows). Figure H.3 provides more results in the form of representative draws

of ξ̂t and δ̂t for each of the four cases, and results on standard error estimates for aξ and aδ.

Table H.1 suggests that both the GAS and the iGAS models work well if they are correctly

specified (iGAS row and iGAS column, or GAS row and GAS column, etc.). In particular, the

estimated ξ̂t and δ̂t tend to be closely aligned to their true values. Also the (slightly) misspecified

cases of a GAS model for an iGAS DGP and vice versa continue to work reasonably well: ξt and

δt remain close to their true paths.
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Table H.1: RMSE outcomes for DGP2
The entries in the table are the RMSEs associated with the filtered tail parameters ξt and δt and with the
estimates of the deterministic parameters aξ and aδ, based on simulations. Top panel: We simulate from
iGAS or GAS models (columns 2–5 and 6–9) and estimate back both iGAS and GAS models (rows 4 and
5). Bottom panel: We simulate as before, but also include an additional explanatory covariate zt in both
the DGP and empirical model. These extended models are labeled iGAS-X and GAS-X.

Model DGP
ξ̂t δ̂t aξ aδ ξ̂t δ̂t aξ aδ

iGAS GAS
iGAS 0.047 0.192 0.005 0.008 0.097 0.287 0.008 0.011
GAS 0.124 0.171 0.018 0.014 0.052 0.052 0.012 0.010

iGAS-X GAS-X
iGAS-X 0.071 0.176 0.008 0.009 0.172 0.167 0.010 0.011
GAS-X 0.125 0.204 0.016 0.010 0.061 0.056 0.013 0.011

When investigating the standard errors of the deterministic parameter estimates, Table H.2

suggests that, while parameter point estimates are close to their true values, the usual asymptotic

standard error estimates based on the inverse Hessian or the sandwich estimates are not necessarily

reliable in the two iGAS cases. In our set-up, these common estimates of the standard errors

are typically too large, providing too conservative inference. A bootstrap procedure tailored to

integrated processes could then be used to avoid this issue; see for instance Boswijk et al. (2021).

Figure H.3 plots example estimates of ξ̂t and δ̂t that are associated with one particular draw

for each of the four cases. Table H.2 reports the standard error estimates associated with the

deterministic parameters.

31



Figure H.3: Tail shape and scale estimates from simulated data: one draw

Estimated tail shape ξ̂t and tail shape δ̂t parameters for DGP2. First row: iGAS DGP and iGAS
estimates (correctly specified). Second row: iGAS DGP and GAS estimates (misspecified). Third
row: GAS DGP and iGAS estimates (misspecified). Fourth row: GAS DGP and GAS estimates (cor-
rectly specified). Factors of ξt and δt are initialized with a static GPD model using the first 250 observations.
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Table H.2: Simulation results: standard errors using different methods
Standard error estimates for the dynamic tail shape model’s deterministic parameters. We first simulate
from iGAS and GAS models, and then estimate back all parameters based on both iGAS and GAS
specifications (top half). We then include an exogenous factor zt, denoted iGAS-X or GAS-X in both the
DGP and the statistical model (bottom half). Columns ParValue and EstValue report average (across
simulations) constrained and unconstrained parameter estimates. StdErrE denotes the standard deviation of
the parameter estimates. Standard error estimates refer to the Empirical Hessian estimator (StdErrH), the
Outer Product of the Gradient estimator (StdErrO), and a Sandwich covariance matrix estimator (StdErrS).

ParValue EstValue StdErrE StdErrH StdErrO StdErrS
DGP: iGAS, Estimate: iGAS

αξ 0.030 -3.534 0.153 0.265 0.267 0.270
αδ 0.069 -2.682 0.112 0.140 0.136 0.145

DGP: iGAS, Estimate: GAS
αξ 0.028 -3.606 0.309 0.353 0.369 0.376
αδ 0.069 -2.690 0.167 0.149 0.150 0.150
βξ 0.996 5.986 0.913 0.907 1.028 0.875
βδ 0.997 5.916 0.675 0.688 0.691 0.691
ωξ 1.468 1.468 1.667 0.955 1.205 0.833
ωδ 2.054 2.054 3.641 1.280 1.238 1.334

DGP: GAS, Estimate: iGAS
αξ 0.015 -4.465 0.885 0.749 0.627 1.026
αδ 0.064 -2.761 0.200 0.163 0.132 0.205

DGP: GAS, Estimate: GAS
αξ 0.033 -3.481 0.393 0.544 0.613 0.524
αδ 0.068 -2.693 0.148 0.172 0.175 0.172
βξ 0.968 3.702 0.754 0.819 1.031 0.717
βδ 0.978 3.839 0.313 0.370 0.375 0.369
ωξ 0.499 0.499 0.027 0.046 0.046 0.046
ωδ 1.003 1.003 0.079 0.098 0.098 0.098

DGP: iGAS-X, Estimate: iGAS-X
αξ 0.029 -3.588 0.306 0.348 0.341 0.459
αδ 0.068 -2.695 0.138 0.132 0.125 0.171
cξ -2.562 -2.562 0.996 1.298 5.666 1.380
cδ -1.568 -1.568 0.242 0.257 0.257 0.313

DGP: GAS-X, Estimate: iGAS-X
αξ 0.029 -3.693 0.949 0.602 0.911 0.622
αδ 0.071 -2.650 0.153 0.142 0.120 0.172
cξ -0.221 -0.221 0.135 0.195 0.160 0.271
cδ -0.663 -0.663 0.236 0.282 0.298 0.276

DGP: iGAS-X, Estimate: GAS-X
αξ 0.023 -4.913 2.959 6.308 10.322 1.708
αδ 0.067 -2.709 0.155 0.132 0.129 0.145
βξ 0.999 8.404 2.969 15.301 18.600 8.561
βδ 1.000 10.411 2.675 20.271 33.219 15.809
ωξ 2.184 2.184 3.140 15.338 19.571 18.477
ωδ 3.034 3.034 2.809 35.958 40.176 23.683
cξ -2.394 -2.394 1.287 2.244 4.227 2.827
cδ -1.601 -1.601 0.274 0.271 0.274 0.306

DGP: GAS-X, Estimate: GAS-X
αξ 0.032 -3.613 0.903 1.032 1.226 0.842
αδ 0.069 -2.685 0.160 0.163 0.164 0.167
βξ 0.977 3.802 0.372 0.556 0.642 0.625
βδ 0.977 3.802 0.268 0.280 0.284 0.285
ωξ 0.505 0.505 0.033 0.051 0.051 0.053
ωδ 0.990 0.990 0.091 0.101 0.102 0.102
cξ -4.236 -4.236 2.579 3.137 3.794 3.180
cδ -1.585 -1.585 0.391 0.403 0.422 0.407
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I Two additional empirical illustrations

This appendix reports empirical results for two additional asset classes: exchange rates and com-

modities. Specifically, we study daily GBP/USD log-returns, and daily Brent crude oil log-returns.

The exchange rate sample ranges from 5 January 1971 to 30 December 2022. The Brent oil sample

ranges from 20 May 1987 to 30 December 2022. We focus on the extreme left tail of each series.

Table I.1 presents the model’s deterministic parameter estimates. A numerical check reveals

that the deterministic parameters lie within the SE region implied by the sufficient conditions of

Theorems 1 and 2. The table does not include parameters cτ , cξ, and cδ since the model does not

include exogenous variables. Figure I.1 plots time-varying parameters, along with each series’ VaR

and ES over time. For both log-returns, we observe pronounced time variation in ξt and δt.
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Table I.1: Parameter estimates

Parameter estimates for the dynamic tail shape model. The second and third columns refer to two additional
illustrations: GBP/USD exchange rate log-returns, and Brent crude oil log-returns. The estimation samples
ranges from 5 January 1971 to 30 December 2022, and from 20 May 1987 to 30 December 2022, respectively.
Standard error estimates are in round brackets and are based on a sandwich covariance matrix estimator.
p-values are in square brackets.

Two additional illustrations
GBP/USD Brent oil

ωξ -2.019 -2.292
(0.10) (0.22)
[0.00] [0.00]

ωδ -1.184 0.070
(0.03) (0.03)
[0.00] [0.04]

aξ 0.008 0.148
(0.01) (0.03)
[0.37] [0.00]

aδ 0.086 0.148
(0.01) (0.01)
[0.00] [0.00]

bξ 0.998 0.997
(0.00) (0.00)
[0.00] [0.00]

bδ 0.992 0.985
(0.00) (0.00)
[0.00] [0.00]

λ 0 0
aτ 0.096 0.420
bτ 0.993 0.982
T 13,450 9,040
T ∗ 1,339 917
loglik -9,011.8 -36,881.3
AIC 18,035.7 73,774.6
BIC 18,080.7 73,817.3
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Figure I.1: Filtered tail parameters for GBP/USD and crude oil log-returns

Top panels: daily log-returns for the GBP/USD exchange rate (left) and Brent crude oil (right). Middle
and bottom panels: filtered tail shape (ξt, middle) and tail scale (δt, bottom) parameters. The thresholds
τt are reported at a 90% confidence level. Value-at-Risk (VaR) and Expected Shortfall (ES) are plotted at
an extreme 99% confidence level (top panels). The estimation samples range from 5 January 1971 to 30
December 2022 for the exchange rate, and from 20 May 1987 to 30 December 2022 for Brent crude oil.
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J Diagnostic checks for filter invertibility

Figures 4 and 5 in Section 4 plot filtered estimates of ξt and δt implied by maximum-likelihood

estimates θ̂ of the deterministic parameters reported in Table 2. Figure J.1 plots the time-varying

parameters for different initial values of f1. Both ξt and δt all converge to the same path, suggesting

that the bivariate filter is invertible at the empirical estimates θ̂.
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Figure J.1: Feasible invertibility conditions for the model

The plots show the filtered paths of tail index ξ̂t and tail shape δ̂t parameters when the factors are
initialized with different starting values. The panels on the left are results for ξt while the right side
panels are results for δt. The lines in the plots correspond to initiate the factors at f̂0 + c · σ(f̂), with
c = (−0.5,−0.4, · · · , 0, · · · ,+0.4,+0.5) and σ(f̂) is the standard deviations of the filtered factors.
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K Bootstrapping standard errors of deterministic pa-

rameters

Section 4.2 reports bootstrapped standard errors; compare also Boswijk et al. (2021). This section

explains how such standard error estimates can be obtained.

The bootstrap proceeds along the following steps. For completeness, the null hypothesis (H0)

states that observed covariate zt has no impact on the tail parameters ξt and δt. The alternative

hypothesis (H1) states that the covariate’s impact on the tail parameters is different from zero.

1. estimate the model for the dynamic thresholds τt, and save the “hit times” and the values

of xt.

2. estimate model under H1.

3. compute ξ̂t and δ̂t for all t.

4. compute PITs, ut = 1(1 + ξtxt/δt)
−1/ξt , using the GPD cdf (2). Use the xt from step 0 for

this.

5. estimate model parameters under H0 to compute ξ̂t
0 and δ̂t

0.

6. sample with replacement T values from ut to obtain u∗t for t = 1 · · ·T .

7. compute x∗t = invCDFGPD(u∗t ) = δ̂t
0
/ξ̂t

0 · [(1− u∗t )
−ξ̂t

0

− 1].

8. with x∗t , t = 1, . . . , T , estimate model under H1.

9. repeat steps 6–8 many times, storing all estimates of a(.) and c(.). Then compute the standard

deviation of those estimates, and/or use them to compute t- and p-values directly.
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L VaR impact estimates for changes in bond yields

The deterministic parameter estimates presented in the final two columns of Table 2 are difficult to

interpret in economic (or probabilistic) terms when considered in isolation. This section addresses

the economic question how market risk measures, such as VaR, responded on average to a e1 bn

bond purchase intervention. To this end, we note that the sensitivity of VaRγ(yt) to bond purchases

zt−1 is given by

dVaRγ(yt)

dzt−1
=

∂VaR
∂τt

dτt
dzt−1

+
∂VaR
∂δt

dδt
df δ

t

df δ
t

dzt−1
+

∂VaR
∂ξt

dξt
df ξ

t

df ξ
t

dzt−1
(L.1)

=cτ +
VaRγ(yt)− τt

δt
δt c

δ −
VaRγ(yt)− τt + δt

(
1−γ
t∗/t

)−ξt
ln
(
1−γ
t∗/t

)
ξt

ξt c
ξ

=cτ + (VaRγ(yt)− τt) cδ −

(
VaRγ(yt)− τt + δt

(
1− γ

t∗/t

)−ξt

ln

(
1− γ

t∗/t

))
cξ,

where cτ is defined in (10) and cδ, cξ are given in (8) with C = (cδ, cξ)′. The expression is

intuitive: upper tail quantiles can change if bond purchases zt−1 affect the conditional quantile τt,

the conditional tail scale δt, or the conditional tail shape ξt. The total impact is obtained as the

weighted average

VaR impactγ = (1/
T∑
t

zt)
T∑
t

(dVaRγ(yt)/dzt−1) zt−1. (L.2)
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