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Abstract

We analyze a bargaining model where there is a long-term relationship between a seller and a buyer

and there is bargaining over a sequence of surpluses that arrives at fixed points in time. Markov Perfect

Equilibria are analyzed and equilibrium payoffs characterized. The transfers between the players can

be described as a first-order system of difference equations. Payoffs depend on both current and future

surpluses. Future surpluses are important partly because the risk of separation leads to the loss of

surplus today and in the future and partly because delay without separation can last into future

periods. We also find conditions for existence and uniqueness of equilibria with immediate agreement.
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1 Introduction

Negotiations often take place in long-term relationships where surpluses sequentially arrive over time.

Some examples of such situations are firm-worker bargaining in models where labor is not perfectly mobile

and bargaining between upstream and downstream firms when there is a long-term relationship between

the two firms. This problem has also received attention in the literature. Muthoo (1995) analyzes a model

where players bargain over a sequence of surpluses and where the arrival of future surpluses depends on

the time of agreement. Also, the papers by Felli and Harris (1996) and Leach (1997) analyze models

where the sequence of bargaining situations are interdependent. More recently, Hall and Milgrom (2008)

analyzed a bargaining model with both a probability of breakdown and conflicts, following the lines of

Binmore, Rubinstein, and Wolinsky (1986). There is also an extensive macro literature on repeated wage

bargaining; see e.g., Christiano, Trabandt, and Walentin (2011).

In this paper, we analyze a bargaining model when there is a long-term relationship between a buyer

and a seller and when there is bargaining over a sequence of surpluses. We analyze Markov Perfect

Equilibria and characterize the equilibrium payoffs.

In the model, a seller and buyer are locked into a long-term relationship. Surpluses arrive sequentially

at given points in time. When a surplus arrives, the seller and buyer bargain over the surplus for a fixed

number of rounds, whereafter the surplus vanishes. Initially, when the surplus arrives, either the buyer or

seller is randomly selected to be the proposer. If the proposal is accepted, the surplus is divided according

to the proposal and if the proposal is rejected, play either moves to the next round or breaks down. If play

moves to the next round, players get disagreement payoffs that are different from the breakdown payoffs.

In the next round, a proposer is randomly selected to make a proposal and so on. Bargaining over the

surplus thus proceeds for a given number of rounds until the surplus is forfeited after the final round. A

new surplus arrives and then bargaining over the surplus starts anew. The model generalizes the credible

bargaining framework in Hall and Milgrom (2008) that also allows for both a probability of breakdown

during negotiations and an outside option based on the payoffs under disagreement. In addition we allow

for an arbitrary number of bargaining rounds in each time period and a more general payoff structure.

We find conditions for the existence and uniqueness of immediate-agreement equilibrium.

We analyze the equilibrium payoffs and find that the payments between the players can be described

as a first-order system of difference equations. The solution of this system is described as the number of

rounds goes to infinity and equilibrium payoffs can be described in terms of (initial round) current surpluses

and future values in the game besides payoffs in terms of disagreement and breakdown. Specifically, note
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that the transfers between the seller and the buyer depend both on current and future surpluses, despite

the fact that parties only bargain over current surpluses; as soon as a new surplus arrive, bargaining over

that surplus starts anew. This is partly because bargaining under a risk of breakdown entails the risk of

losing both current ant future surpluses and partly because delay without separation can last until a new

surplus arrives, which means that future surpluses affect the current bargaining outcome.

The model in this paper is different from the model in Muthoo (1995), where the time of arrival of

future surpluses is dependent on the time of agreement. Nevertheless, the payoff is dependent on the

expected value in future agreements. As in Muthoo (1995), the division of surplus is different from the

division of the surplus in a standard bargaining game, see for example Rubinstein (1982), although for

other reasons than in Muthoo (1995).

The bargaining model is introduced in section 2. Section 3 analyzes the equilibrium and finally section

4 concludes the paper.

2 The model

There are two parties i ∈ N = {b, s} bargaining over a sequence of values {vt}∞0 where vt = {vbt , vst } ∈ R2

is the value that arrives in time period t. In a given time period t, the parties bargain over how to share

the surplus. Bargaining in period t over vt takes place in R rounds; a round lasts for ∆ = 1
R units of time.

If an agreement is reached between the parties on some payoff division, the distribution is implemented

in round r in period t. If no agreement is reached before or in round R the surplus is forfeit. During

bargaining, the parties separate exogenously with probability δ̄ when a proposal is rejected. Parties

discount future values by the discount factor β per time period. Thus, the value in period t of receiving a

unit of goods in period t′ > t is βt
′−t. In each round, the proposer is randomly selected with probability

pst for the seller and p
b
t for the buyer. A strategy in the game for player i is denoted σi. Let σ = (σi)i∈N

and let Σ denote the set of strategy profiles. In general, the strategy at any round in time period t is a

function the history up to that round.

Payoffs are potentially nonlinearly dependent on vt. Let Υr
t (vst ) denote the current (net transfer)

payoff of the seller in round r and time period t if agreement is reached in that round and time period.

Similarly, let φrt
(
vbt
)
denote the current (net transfer) payoff of the buyer in round r and time period t. As

an example, suppose a firm is bargaining with a worker over a fixed labor input of the worker that is used

in the production of a good that the firm sells. Υr
t is then the utility cost of supplying labor for the worker

and φrt the gross profits of the firm. We assume that surpluses are nonincreasing in rounds; Υr′
t ≤ Υr

t and
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φr
′
t ≥ φrt for r

′ > r. An example of Υr
t and φ

r
t that satisfies this is as follows. Assume there is a fixed

surplus vt that arrives at the start of t and that shrinks by θ; we have Υr
t = θ(r−1)∆vst and φ

r
t = θ(r−1)∆vbt .

The net surplus of agreement is φrt + Υr
t . Letting W

r
t denote the transfer between agents in cases where

an agreement is reached, total current payoffs are then Υr
t +W r

t and φ
r
t −W r

t . Furthermore, let H denote

the set of histories and let hrt denote the history up to round r and time t and let h
0
t denote the history

before the first round in period t. For any strategy profile σ ∈ Σ, let σ
(
hrt+1

)
denote the restriction of σ

to the histories consistent with hrt+1. Given the history h
r
t+1, let V

r
t+1

(
hrt+1, σ

(
hrt+1

))
denote the present

value of the seller that accrues if play follows the strategy profile σ
(
hrt+1

)
following hrt+1 for all periods

t′ ≥ t + 1. Similarly, let F rt+1

(
hrt+1, σ

(
hrt+1

))
denote the present value of the seller. Given a strategy

profile σ that prescribes agreement in round r and period t on the transfer W r
t , the continuation payoff

of the seller is

Υr
t +W r

t + βV 0
t+1

(
h0
t+1, σ

(
h0
t+1

))
(1)

and the continuation payoff of the buyer is

φrt −W r
t + βF 0

t+1

(
h0
t+1, σ

(
h0
t+1

))
, (2)

where h0
t+1 = {hrt ,W r

t , A}. The model is a generalization of Hall and Milgrom (2008), both because we

allow for R > 1 rounds and for a more general payoff structure. Thus, let Ut denote the value for the seller

when there is a breakdown in bargaining. For the buyer, the value in case of a breakdown is normalized

to zero. If an agreement is not reached in a bargaining round r, the seller receives ẑt∆ and the buyer

γ̂t∆ in the round. We assume ẑt > 0 and γ̂t > 0. The difference between this model and the model in

Muthoo (1995) is that surpluses arrive at fixed points in time in this paper while they arrive at a fixed

time after an agreement in Muthoo (1995). Moreover, proposers are selected at random in this paper

instead of sequentially.

In the paper, we focus on Markov strategies. A Markov strategy depends on r, t and the payoff

relevant variables. A Markov Perfect Equilibrium is a SPE in Markov strategies (MPE). For a formal

treatment, see Maskin and Tirole (2001).

3 Equilibrium

By standard arguments, in any MPE where an offer is accepted with positive probability, when being

selected as proposer, the proposer offers the respondent a transfer such that the respondent is indifferent
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between accepting and rejecting. Let W r,s
t denote a proposal by the seller and let W r,b

t denote a proposal

by the buyer in round r. Define ∆ = 1
R and let δ = δ̄

∆ . For now, we restrict attention to equilibria where

an agreement is reached; below we describe conditions for existence and uniqueness. Then, as long as

r < R, in any equilibrium prescribing an agreement, the buyer offers the seller W r,b
t such that

Υr
t +W r,b

t + β
R−r+1
R V 0

t+1

(
h0
t+1, σ

(
h0
t+1

))
= δ∆Ut + (1− δ∆) pbt

[
ẑt∆ + β

1
R

(
Υr+1
t +W r+1,b

t + β
R−r
R V 0

t+1

(
h0′
t+1, σ

(
h0′
t+1

)))]
(3)

+ (1− δ∆) pst

[
ẑt∆ + β

1
R

(
Υr+1
t +W r+1,s

t + β
R−r
R V 0

t+1

(
h0′′
t+1, σ

(
h0′′
t+1

)))]
,

where h0
t+1, h

0′
t+1 and h

0′′
t+1 are identical up to period t and before round r. Following round r in period

t, h0
t+1 prescribes acceptance of W

r,b
t while h0′

t+1 and h
0′′
t+1 prescribes rejection of W

r,b
t and acceptance

of W r+1,b
t and W r+1,s

t , respectively. Note that, since we analyze Markov Perfect equilibria, we have

V 0
t+1

(
h0
t+1, σ

(
h0
t+1

))
= V 0

t+1

(
h0′
t+1, σ

(
h0′
t+1

))
= V 0

t+1

(
h0′′
t+1, σ

(
h0′′
t+1

))
= V 0

t+1 and similarly for the seller.

Then, as long as r < R, the seller offers the buyer W r,s
t such that

φrt −W
r,s
t + β

R−r+1
R F 0

t+1 = (1− δ∆) pbt

[
γ̂t∆ + β

1
R

(
φr+1
t −W r+1,b

t + β
R−r
R F 0

t+1

)]
+ (1− δ∆) pst

[
γ̂t∆ + β

1
R

(
φr+1
t −W r+1,s

t + β
R−r
R F 0

t+1

)]
. (4)

When r = R, the values are

ΥR
t +WR,b

t + β
1
RV 0

t+1 = δ∆Ut + (1− δ∆) pbt+1

[
ẑt∆ + β

1
R

(
Υ0
t+1 +W 0,b

t+1 + βV 0
t+2

)]
+ (1− δ∆) pst+1

[
ẑt∆ + β

1
R

(
Υ0
t+1 +W 0,s

t+1 + βV 0
t+2

)]
(5)

and

φRt −W
R,s
t + β

1
RF 0

t+1 = (1− δ∆) pbt+1

[
γ̂t∆ + β

1
R

(
φ0
t+1 −W

0,b
t+1 + βF 0

t+2

)]
(6)

+ (1− δ∆) pst+1

[
γ̂t∆ + β

1
R

(
φ0
t+1 −W

0,s
t+1 + βF 0

t+2

)]
.

Before proving the main result, the following example illustrates that transfers in a given period t depend

on e.g., surpluses in all time periods following t.

Example 1 A simple example with two time periods and one round in each time period. Proposer prob-
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abilities are 1
2 , β = 1 and Υ1

t = 0 for t = {1, 2}, Ut = U , ẑ1 = ẑ2 = ẑ, γ̂1 = γ̂2 = γ̂, for t = {1, 2} and

φ1
1 6= φ1

2. In the last round, we have

W 1,s
2 = φ1

2 − (1− δ∆) γ̂∆

W 1,b
2 = δ∆U + (1− δ∆) ẑ∆. (7)

Then the continuation payoffs at the beginning of period 2 can be written as, using ∆ = 1,

F 0
2 =

1

2
(1− δ) γ̂ +

1

2

(
φ1

2 − (δU + (1− δ) ẑ)
)

V 0
2 =

1

2

(
φ1

2 − (1− δ) γ̂
)

+
1

2
(δU + (1− δ) ẑ) . (8)

In the first time period transfers are, using (5) and (6),

W 1,s
1 = φ1

1 + F 0
2 − (1− δ) 1

2

[
γ̂ +

(
φ1

2 −W
1,b
2

)]
− (1− δ) 1

2

[
γ̂ +

(
φ1

2 −W
1,s
2

)]
,

W 1,b
1 = δU + (1− δ) 1

2

[
ẑ +W 1,b

2

]
+ (1− δ) 1

2

[
ẑ +W 1,s

2

]
− V 0

2 . (9)

Clearly, the wage W 1,s
1 and W 1,b

1 depend on second period surplus, as long as δ < 1.

Note that the transfers between the seller and the buyer depend both on current and future surpluses,

despite the fact that parties start to bargain as soon as a new surplus arrives, as long as breakdown

probability is less than one. This is partly because a breakdown of negotiations risks losing both current

and future surpluses, in turn having the implication that future surpluses affect the current bargaining

outcome, and partly because delay without separation might last until future surpluses arrive.

We can rearrange the equilibrium conditions for making an acceptable proposal (3) and (4) in any

round r < R so that the transfers between the seller and the buyer can be characterized by two difference

equations. Thus, we have, for r ≤ R− 1,

 W r,b
t

W r,s
t

 = (1− δ∆)β
1
R Āt

 W r+1,b
t

W r+1,s
t

+Br
t (10)

where

Āt =

 pbt 1− pbt
pbt 1− pbt

 (11)
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and

Br
t =

 (
(1− δ∆)

(
ẑt∆ +

[
β
1
RΥr+1

t + β
R−r+1
R V 0

t+1 − Ut
])
−
(

Υr
t + β

R−r+1
R V 0

t+1 − Ut
))

−
[
(1− δ∆)

(
γ̂t∆ +

[
β
1
Rφr+1

t + β
R−r+1
R F 0

t+1

])
−
(
φrt + β

R−r+1
R F 0

t+1

)]
 . (12)

This follows easily by rearranging expressions (3) and (4). Intuitively, the current transfers are equal

to a combination of a current round payoffs, as given by Br
t , plus a probability-weighted average of the

transfers in the next round, modified by discounting and the probability of breakdown. Note that Āt is

idempotent.

Moreover, the equilibrium conditions (5) and (6) for making an acceptable proposal in the last round of

period t, i.e., when a rejection leads to complete forfeit of the surplus in period t and continued bargaining

in period t+ 1, can be rewritten as

 WR,b
t

WR,s
t

 = (1− δ∆)β
1
R Āt+1

 W 1,b
t+1

W 1,s
t+1

+BR
t (13)

where

BR
t =

 (
(1− δ∆)

(
ẑt∆ +

[
β
1
RV 0

t+1 − Ut
])
−
(

ΥR
t + β

1
RV 0

t+1 − Ut
))

−
[
(1− δ∆)

(
γ̂t∆ + β

1
RF 0

t+1

)
−
(
φRt + β

1
RF 0

t+1

)]
 . (14)

By repeatedly using expressions (10) - (12) and expressions (13) - (14) in a MPE with immediate

agreement, the solution for the transfers between the seller and the buyer is given by

 W 1,b
t

W 1,s
t

 = (1− δ∆)R−1 β
R−1
R Āt

 WR,b
t

WR,s
t

+B1
t +

R−1∑
r=2

(1− δ∆)r−1 β
r−1
R ĀtB

r
t (15)

and  WR,b
t

WR,s
t

 = (1− δ∆)β
1
R Āt+1

 W 1,b
t+1

W 1,s
t+1

+BR
t . (16)

The following Lemma describes the transfers as a first-order difference equation.

Lemma 1 The transfers between the seller and the buyer are given by the following difference equation:

 W 1,b
t

W 1,s
t

 = (1− δ∆)R βĀt+1

 W 1,b
t+1

W 1,s
t+1

+B1
t +

R∑
r=2

(1− δ∆)r−1 β
r−1
R ĀtB

r
t . (17)
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The following example shows that uniqueness of an immediate agreement equilibrium cannot be guar-

anteed.

Example 2 An example with two time periods and one round in each time period (i.e., ∆ = 1). Proposer

probabilities are 1
2 , β = 1, ẑt = γ̂t = 0 and Υ1,t = 0 for t = {1, 2}, U1 = φ1

2 + γ and φ1
2 > U2. In the last

round, equilibrium prescribes agreement and we have

W 1,s
2 = φ1

2

W 1,b
2 = δU2. (18)

Then the continuation payoffs at the beginning of period 2 can be written as

F 0
2 =

1

2

(
φ1

2 − δU2

)
V 0

2 =
1

2

(
φ1

2 − δU2

)
+ δU2. (19)

Consider a candidate equilibrium where unacceptable offers are made in period 1. Then payoffs in period

1 are

(1− δ)F 0
2 (20)

δ∆U2 + (1− δ)V 0
2 .

If the buyer deviates and makes an acceptable offer Ŵ = W 1,b
1 + ε for some ε > 0, the wage has to satisfy

(
Ŵ − ε

)
+ V 0

2 = δ∆U1 + (1− δ)V 0
2 ⇒ Ŵ = δU2 − δV 0

2 + ε. (21)

Then the gain from making an acceptable offer is, using that F 0
2 + V 0

2 = φ1
2,

φ1
1 + δ

(
φ1

2 − U1

)
− ε. (22)

The above expression is violated if
φ1

1

δ
< U1 − φ1

2 = γ. (23)

Since an identical condition can be established if the seller deviates and makes an acceptable offer, there

is an equilibrium with zero probability of agreement in period 1 if γ is large enough. Note that the above
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expression implies φ1
1 + φ1

2 < U1, since δ < 1 when R = 1.

To ensure existence, we impose the following conditions on payoffs.

Condition 1 For all t and r < R,

φrt + Υr
t > φr+1

t + Υr+1
t + ẑt∆ + γ̂t∆

and, for r = R,

φrt + Υr
t > ẑt∆ + γ̂t∆.

Condition 2 For all r, t we have

φrt + Υr
t + β

R−r+1
R

∞∑
i=1

(
βi−1

) (
φ1
t+i + Υ1

t+i

)
> Ut.

The first condition requires that there is a surplus in agreeing rather than disagreeing and remaining

in the relationship and the second that there is a surplus in disagreeing rather than separating.

Proposition 1 If conditions 1 and 2 are satisfied, an immediate agreement MPE exists for any ∆ ≤ 1.

Proof : See the appendix. �

To show uniqueness we restrict attention to convergent sequences of Ut, ẑt and γ̂t. Let

Ū = lim
t→∞

Ut

z̄ = lim
t→∞

ẑt (24)

γ̄ = lim
t→∞

γ̂t.

We restrict the limits of the inside and outside options in the following way.

Condition 3 Ū , z̄ and γ̄ satisfies

Ū < z̄ + γ̄.

Proposition 2 If conditions 1, 2 and 3 are satisfied, then there is a β̄ such that, for any β > β̄,1 the

immediate agreement MPE is unique for any ∆ < ∆̂.

1Note that β̄ = 1
e
. If the yearly discount rate is 4%, the condition is satisfied if surpluses arrive in intervals of up to

almost 25 years.
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Proof : See the appendix. �

Due to conditions 1 and 2, the only reason for delaying is that the value of breakdown in the future

is larger than remaining in the relationship. Given the fairly mild condition 3, the proposition rules out

the case with delayed agreement. 2

Equilibrium transfers as ∆ → 0 can be found by repeatedly using expressions (15) - )16), together

with the following continuity and boundedness conditions.

Condition 4 For all r, t such that r < R− 1 we have

lim
∆→0

φr+1
t = φrt

lim
∆→0

Υr+1
t = Υr

t .

Furthermore, lim∆→0 φ
R
t = 0 and lim∆→0 ΥR

t = 0.

Condition 5 The sequence of surpluses {Υ1
t }∞t=1 and {φ1

t }∞t=1 satisfies

lim
t→∞

lim
∆→0

∞∑
i=1

 t+i∏
j=1

(
(1− δ∆)R

)
β

(φ1
t+i + Υ1

t+i

)
= 0. (25)

Thus, the surpluses grow slower than breakdown-adjusted discounting, ensuring that the total dis-

counted value when bargaining is finite.

The equilibrium transfers are given by the following proposition.

Proposition 3 Suppose conditions 4 and 5 are satisfied. In a MPE with immediate agreement, the

solution to the system of difference equations (15) and (16) when ∆→ 0 is given by

 W 1,b
t

W 1,s
t

 =

∞∑
i=0

βie−δiĀt+i
(
B̄t+i + D̄t+i

)
, (26)

2 If the sequences are not convergent, there is a unique equilibrium if condition 3 is modified to

δ

δ − lnβ
lim inf

t→∞
Ut +

− lnβ

δ − lnβ
lim inf

t→∞
(ẑt + γ̂t) > lim sup

t→∞
Ut

10



where

B̄t+i =
1− βe−δ
δ − lnβ

 δUt+i + ẑt+i − δV 0
t+i+1

−γ̂t+i + δF 0
t+i+1

 (27)

D̄t+i =

 −Υ1
t+i

φ1
t+i

 . (28)

Moreover,

lim
∆→0

W 1,b
t = lim

∆→0
W 1,s
t .

Proof : Step 1. Preliminaries and showing lim∆→0W
1,b
t = lim∆→0W

1,s
t .

Note that we can write

Br
t = B̄r

t + D̄r
t , (29)

where, for r < R,

B̄r
t =

 1 0

0 −1

∆

 δUt + (1− δ∆) ẑt − δ
(
β1−r∆+∆V 0

t+1

)
(1− δ∆) γ̂t − δ

(
β1−r∆+∆F 0

t+1

)
 , (30)

and

D̄r
t =

 1 0

0 −1

 ([
β∆ (1− δ∆) Υr+1

t + β1−r∆+∆V 0
t+1

])
−
(
Υr
t + β1−r∆+∆V 0

t+1

)(
β∆ (1− δ∆)φr+1

t + β1−r∆+∆F 0
t+1

)
−
(
φrt + β1−r∆+∆F 0

t+1

)
 . (31)

and for r = R,

B̄R
t =

 1 0

0 −1

∆

 δUt + (1− δ∆) ẑt − δ
([
β∆Υ1

t+1 + β1+∆V 0
t+2

])
(1− δ∆) γ̂t − δ

([
β∆φ1

t+1 + β1+∆F 0
t+2

])
 (32)

and

D̄R
t =

 1 0

0 −1

 ([
β∆V 0

t+1

])
−
(

ΥR
t + β

1
RV 0

t+1

)
(
β∆F 0

t+1

)
−
(
φRt + β

1
RF 0

t+1

)
 . (33)
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Using expressions (15) - (16) we then have

 W 1,b
t

W 1,s
t

 =
t̂∏

j=1

(
(1− δ∆)R βĀt+j

) W 1,b

t+t̂

W 1,s

t+t̂

 (34)

+

t̂∑
i=0

 i∏
j=1

(
(1− δ∆)R βĀt+j

)(B1
t+i +

R∑
r=2

(1− δ∆)r−1 β
r−1
R Āt+iB

r
t+i

)
.

If the sequences {Υ1
t }∞t=1 and {φ1

t }∞t=1 satisfy condition 5, we have

lim
t̂→∞

t̂∏
j=1

(
(1− δ∆)R βĀt+j

) W 1,b

t+t̂

W 1,s

t+t̂

 =

 0

0

 . (35)

Hence the first term in expression (34) goes to zero as t̂→∞. Moreover, noting that Br
t = B̄r

t + D̄r
t gives W 1,b

t

W 1,s
t

 =

∞∑
i=0

 i∏
j=1

(
(1− δ∆)R β

)
Āt+j

(B̄1
t+i + D̄1

t+i

)
(36)

+
∞∑
i=0

 i∏
j=1

(
(1− δ∆)R β

)
Āt+j

(R−1∑
r=2

(1− δ∆)r−1 β
r−1
R Āt+i

(
B̄r
t+i + D̄r

t+i

))

+
∞∑
i=0

 i∏
j=1

(
(1− δ∆)R β

)
Āt+j

 (1− δ∆)R−1 β
R−1
R Āt+i

(
B̄R
t+i + D̄R

t+i

)
.

Note that, by the definition of Āt+i, the only terms that are different in W
1,b
t and W 1,s

t are B̄1
t and D̄

1
t .

Then, since lim∆→0 B̄
1
t = 0 and we have lim∆→0 D̄

1
t = 0 by using condition 4, it follows that

lim
∆→0

W 1,b
t = lim

∆→0
W 1,s
t . (37)

Step 2. Computing B̄t+i and D̄t+i.

Define

B̄Σ
t+i =

R∑
r=1

(1− δ∆)r−1 β
r−1
R B̄r

t+i. (38)

Then, using the definition of R and B̄r
t+i,

B̄Σ
t+i =

1− (1− δ∆)R β
R
R

1
∆ −

1
∆ (1− δ∆)β

1
R

 1 0

0 −1

−1 δUt + (1− δ∆) ẑt − δ
(
β
1
RV 0

t+1

)
(1− δ∆) γ̂t − δ

(
β
1
RF 0

t+1

)
 . (39)
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Letting

B̄t+i = lim
R→∞

B̄Σ
t+i (40)

and using that

lim
R→∞

1−
(
1− δ 1

R

)R
β

R−R
(
1− δ 1

R

)
β
1
R

=
1− βe−δ
δ − lnβ

(41)

and the properties of Āt+i, i.e., we have Āt+jĀt+i = Āt+i, we can establish (27) in the proposition. To

establish (28), let

D̄Σ
t+i =

R∑
r=2

(1− δ∆)r−1 β
r−1
R D̄r

t+i (42)

and note that D̄Σ
t+i can be written as

R−1∑
r=2

(1− δ∆)r−1 β
r−1
R

 β∆ (1− δ∆) Υr+1
t+i −Υr

t+i

β∆ (1− δ∆)φr+1
t+i − φrt+i

+ (1− δ∆)R−1 β
R−1
R

 −ΥR
t+i

−φRt+i

 , (43)

a telescoping series and hence, using that limR→∞ D̄
1
t+i = 0, that Āt+jĀt+i = Āt+i and defining

D̄t+i = lim
R→∞

(
D̄1
t+i + D̄Σ

t+i

)
=

 −Υ1
t+i

−φ1
t+i


we can establish (28).�

The proof divides up the round payoff in (12) in terms of flow round payoffs in expression (27) and

surplus changes between rounds in (28). Specifically, even if transfers in (15) depend on the surpluses in

all rounds in the current period through Br
t , the resulting wage depends only on the surplus in the first

round in each time period. From a technical perspective, this is because the payoffs in expression (17)

depend on the change in surpluses between rounds implying that surpluses for higher rounds enter payoffs

in a telescoping way and hence cancel themselves out, leading to that transfers depend only on first-period

surplus. Note also that, since agreement is reached in the first round, total payoffs depend only on first-

period surplus. Thus, we can express the equilibrium payoffs partly in terms of future disagreement and

separation payoffs, i.e., Ut+i, ẑt+i and γ̂t+i, and partly in terms of future values of the problem, besides

depending on current first round surplus.

Remark 1 Note that expression (17) in Lemma 1 can be written as

W 1,b
t = e−δβW 1,b

t+1 + Āt
(
B̄t + D̄t

)
. (44)
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Generally these expressions are somewhat complicated. However, in the special case when the prob-

ability of breakdown vanishes (i.e., δ → 0), equilibrium payoffs have a simpler and more intuitive form.

Then (26) becomes  W 1,b
t

W 1,s
t

 =

∞∑
i=0

βiĀt+i

 1−β
− lnβ ẑt+i −Υ1

t+i

− 1−β
− lnβ γ̂t+i + φ1

t+i

 . (45)

Remark 2 Note that, if there is no discounting between rounds in a given time period, but rather only

between time periods, the results above hold with minor modifications of conditions and results. Equation

(3) is modified to

Υr
t +W r,b

t + βV 0
t+1

= δ∆Ut + (1− δ∆) pbt

[
ẑt∆ +

(
Υr+1
t +W r+1,b

t + βV 0
t+1

)]
(46)

+ (1− δ∆) pst

[
ẑt∆ +

(
Ῠr+1
t +W r+1,s

t + βV 0
t+1

)]
Equations (4), (5) and (6) are modified similarly. Straightforward modifications of Propositions 1 and

2 establish existence and uniqueness. Proposition 3 is modified so that (1− δ∆)r−1 β
r−1
R is replaced by

(1− δ∆)r−1 and the adjustment of Br
t in (12) is

Br
t =

 (1− δ∆)
(
ẑt∆ +

[
Υr+1
t + βV 0

t+1 − Ut
])
−
(
Υr
t + βV 0

t+1 − Ut
)

−
[
(1− δ∆)

(
γ̂t∆ +

[
φr+1
t + βF 0

t+1

])
−
(
φrt + βF 0

t+1

)]
 , (47)

which is reflected in the construction of B̄r
t and D̄

r
t in the proof. In the statement of the proposition,

expression (27) when ∆→ 0 is modified to

B̄t+i =
1− e−δ

δ

 δUt+i + ẑt+i − δβV 0
t+i+1

−γ̂t+i + δβF 0
t+i+1

 . (48)

Furthermore, we can write

W 1,b
t = βW 1,b

t+1 +
1− e−δ

δ

(
δUt + ẑt − δβV 0

t+1

)
−Υ1

t (49)

+
(

1− pbt
)[1− e−δ

δ

(
−γ̂t + δβF 0

t+1 −
(
δUt + ẑt − δβV 0

t+1

))
+
(
φ1
t + Υ1

t

)]

14



As δ → 0 then limδ→0
1−e−δ
δ = 1 and hence

W 1,b
t = δ

(
Ut − βV 0

t+1

)
+ ẑt −Υ1

t (50)

+
(

1− pbt
) (
φ1
t + Υ1

t − γ̂t − δUt − ẑt + δβ
(
F 0
t+1 + V 0

t+1

))
+ βW 1,b

t+1.

Thus, the value of agreeing is equal to the disagreement value (the right-hand side terms on the first row)

plus the seller proposer probability (1 − pbt) times the surplus of agreeing plus the future wage (capturing

future surpluses). When the probability of breakdown parameter δ goes to infinity, equilibrium payoffs

depend only on the separation payoffs and not on ẑt and γ̂t, besides current and future values. Too see

this, note that, as δ →∞, we get

W 1,b
t = lim

δ→∞
pbt

[
1− e−δ

δ

(
δUt + ẑt − δβV 0

t+1

)
−Υ1

t

]
+ lim
δ→∞

(
1− pbt

)[1− e−δ
δ

(
−γ̂t + δβF 0

t+1

)
+ φ1

t

]
. (51)

Since limδ→∞
1−e−δ
δ → 0, we thus get

W 1,b
t =

(
1− pbt

) (
φ1
t + βF 0

t+1

)
− pbt

((
Υ1
t + βV 0

t+1

)
− Ut

)
, (52)

implying that the payoff of agreeing is

Υ1
t +W 1,b

t + βV 0
t+1 =

(
1− pbt

) (
φ1
t + βF 0

t+1 +
(
Υ1
t + βV 0

t+1

)
− Ut

)
+ Ut, (53)

i.e., the separation outside option plus the proposal probability times the total value of agreeing. Note that

the above expression differs from (45) in that the current payoff of agreeing for the seller depends on the

outside option Ut.

4 Concluding remarks

In the paper we analyze a bargaining model when there is a long-term relationship between a seller and

a buyer and bargaining over a sequence of surpluses arriving at fixed points in time. Markov Perfect

Equilibria are analyzed and the equilibrium payoffs characterized. We find conditions for uniqueness and

existence of an immediate-agreement equilibrium. Furthermore, we show that the transfers between the

players can be described as a first-order system of difference equations in terms of current and future

15



transfers.

We find that the transfers between the seller and the buyer depend both on current and future

surpluses, despite the fact that parties starts to bargain as soon as a new surplus arrives, as long as

breakdown probability is positive. This is not only because bargaining under a risk of breakdown risks

losing the surplus both today and in the future, but also because delay without separation might last until

the arrival of future surpluses, which in turn means that future surpluses affect the current bargaining

outcome.
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Appendix
This appendix gives proofs of some of the results in the paper.

Proof of Proposition 1. Suppose the buyer is the proposer. The seller case follows by a similar

argument.

Case 1. Suppose r < R. The wage when making an acceptable offer is

Υr
t +W r,b

t + β
R−r+1
R V 0

t+1

= δ∆Ut + (1− δ∆) pbt

[
ẑt∆ + β

1
R

(
Υr+1
t +W r+1b

t + β
R−r
R V 0

0,t+1

)]
(54)

+ (1− δ∆) pst

[
ẑt∆ + β

1
R

(
Ῠr+1
t +W r+1,s

t + β
R−r
R V 0

t+1

)]
and when making an unacceptable offer

(1− δ∆)
(
−pbtβ

1
RW r+1,b

t − pstβ
1
RW r+1,s

t +
[
γ̂t∆ +

(
β
1
Rφr+1

t + β
R−r+1
R F 0

t+1

)])
. (55)

The gain of making an acceptable offer is then

φrt − (1− δ∆)
(
β
1
Rφr+1

t + γ̂t∆
)
−
(
W r,b
t − (1− δ∆)β

1
R

(
pbtW

r+1,b
t + pstW

r+1,s
t

))
+ δ∆β

R−r+1
R F 0

t+1. (56)

From expression (10) - (12) we have

(
W r,b
t − (1− δ∆)β

1
R

(
pbtW

r+1,b
t + pstW

r+1,s
t

))
(57)

=
(

(1− δ∆)
(
ẑt∆ + β

1
RΥr+1

t

)
−
(

Υr
t + δ∆

(
β
R−r+1
R V 0

t+1 − Ut
)))

and hence expression (56) is

φrt + Υr
t − (1− δ∆)

(
β
1
Rφr+1

t + β
1
RΥr+1

t + ẑt∆ + γ̂t∆
)

+ δ∆
(
β
(
F 0
t+1 + V 0

t+1

)
− Ut

)
. (58)

Using conditions (1), (2) and that

F 0
t+1 + V 0

t+1 =
∞∑
i=1

(
βi
) (
φ1
t+i + Υ1

t+i

)
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we establish that there exists a ∆̆ such that

φrt + Υr
t −

(
β∆φr+1

t + β∆Υr+1
t + ẑt∆ + γ̂t∆

)
> 0, (59)

φrt + Υr
t + β

R−r+1
R

(
F 0
t+1 + V 0

t+1

)
− Ut > 0

for any ∆ ≤ 1.

Case 2. Suppose r = R. The gain of making an acceptable offer is

φRt − (1− δ∆) γ̂t∆−
(
WR,b
t − (1− δ∆)β

1
R

(
pbt+1W

1,b
t+1 + pst+1W

1,s
t+1

))
+ δ∆β

1
RF 0

t+1. (60)

From (16) we have

(
WR,b
t − (1− δ∆)β

1
R

(
pbt+1W

1,b
t+1 + pst+1W

1,s
t+1

))
(61)

=
(

(1− δ∆)
(
ẑt∆ +

[
β
1
RV 0

t+1 − Ut
])
−
(

ΥR
t + β

1
RV 0

t+1 − Ut
))

and hence (60) can be rewritten as

φRt + ΥR
t − (ẑt∆ + γ̂t∆) + δ∆

[
β
1
R
(
V 0
t+1 + F 0

t+1

)
+ (ẑt∆ + γ̂t∆)− Ut

]
.

By similar arguments as in Case 1 there is a ∆̃ such that the expression above is positive, for all ∆ ≤ 1.

Combining case 1 and 2 and letting ∆̄ = min{∆̆, ∆̃} we establish existence for any ∆ ≤ 1. �

Proof of Proposition 2. Suppose the buyer is the proposer. The seller case follows by a similar

argument.

We first show that, if it is profitable to make an acceptable offer in round r in period t, then it is

profitable to make an acceptable offer in period t− 1.

Suppose the MPE has a buyer proposal accepted in round r ≤ R for some t. Consider round r − 1

and suppose the buyer proposes Ŵ such that

Υr−1
t + Ŵ − ε+ β

R−r
R V 0

t+1

= δ∆Ut + (1− δ∆) pbt

[
ẑt∆ + β

1
R

(
Υr
t +W r,b

t + β
R−r−1
R V 0

t+1

)]
(62)

+ (1− δ∆) pst

[
ẑt∆ + β

1
R

(
Ῠr+1
t +W r,s

t + β
R−r−1
R V 0

t+1

)]
for some ε > 0. Clearly, the seller accepts this offer with probability one for any ε > 0. The payoff when
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an unacceptable offer is made is

(1− δ∆)
(
−pbtβ

1
RW r,b

t − pstβ
1
RW r,s

t +
[
γ̂t∆ +

(
β
1
Rφrt + β

R−r
R F 0

t+1

)])
. (63)

Note that we can set ε such that Ŵ − ε = W r,b
t and hence the gain of making an acceptable offer is then

φr−1
t − (1− δ∆)

(
β
1
Rφrt + γ̂t∆

)
−
(
W r,b
t + ε− (1− δ∆)β

1
R

(
pbtW

r,b
t + pstW

r,s
t

))
+ δ∆β

R−r
R F 0

t+1. (64)

Using expression (57) as in the proof of proposition 1 above, we have

φr−1
t + Υr−1

t − (1− δ∆)
(
β
1
Rφrt + β

1
RΥr

t + ẑt∆ + γ̂t∆
)

+ δ∆
(
β
(
F 0
t+1 + V 0

t+1

)
− Ut

)
− ε. (65)

For any β > 1
e ≡ β̄ we have

1

δ − lnβ

(
δUt+v + ẑt+v + γ̂t+v

)
>

δ

δ − lnβ
Ut+v +

− lnβ

δ − lnβ

(
ẑt+v + γ̂t+v

)
. (66)

Hence, from condition 3, there is a t∗ such that, for any t > t∗, we have

1− βe−δ
δ − lnβ

∞∑
v=1

(
βe−δ

)v−1 (
δUt+v + ẑt+v + γ̂t+v

)
(67)

>
(

1− βe−δ
) ∞∑
v=1

(
βe−δ

)v−1
(

δ

δ − lnβ
Ut+v +

− lnβ

δ − lnβ

(
ẑt+v + γ̂t+v

))
> Ut.

Since

F 0
t+1 + V 0

t+1 ≥
1− βe−δ
δ − lnβ

∞∑
v=1

(
βe−δ

)v−1 (
δUt+v + ẑt+v + γ̂t+v

)
, (68)

condition 1, 2 and 3 establishes that, for ε small, there exists a ∆̆ such that expression (65) is positive for

∆ < ∆̆ whenever β > 1
e .

Suppose the buyer proposal is not accepted in any round. Consider round R and suppose the buyer

proposes Ŵ such that

ΥR
t + Ŵ − ε+ β

1
RV 0

t+1 = δ∆Ut + (1− δ∆) pbt

[
ẑt∆ + β

1
RV 0

t+1

]
+ (1− δ∆) pst

[
ẑt∆ + β

1
RV 0

t+1

]
. (69)

The seller accepts this offer with probability one as long as ε > 0. The payoff when an unacceptable offer
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is made is

(1− δ∆)
[
γ̂t∆ + β

1
RF 0

t+1

]
(70)

and hence the gain is

φRt + ΥR
t − (1− δ∆) (ẑt∆ + γ̂t∆) + δ∆

(
β
1
R
(
V 0
t+1 + F 0

t+1

)
− Ut

)
− ε. (71)

Again, for ε small, there exists a ∆̆ such that expression (65) is positive for ∆ < ∆̌ whenever β > 1
e .

Combining case 1 and 2 and letting ∆̂ = min{∆̆, ∆̌} we establish uniqueness for any ∆ < ∆̂ whenever

β > 1
e . �
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