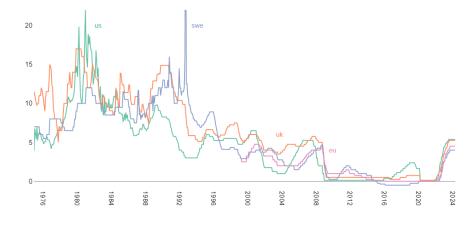
Optimal Contracts and Inflation Targeting Revisted

Torsten Persson and Guido Tabellini

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inflation in the last 50 years

Inflation targeting introduced in early '90s to fight inflation


- Distorted incentives, not policy mistakes (Kydland & Prescott)
- Institutional changes => central banks gained credibility

500

New challenges: policy rates at the ZLB

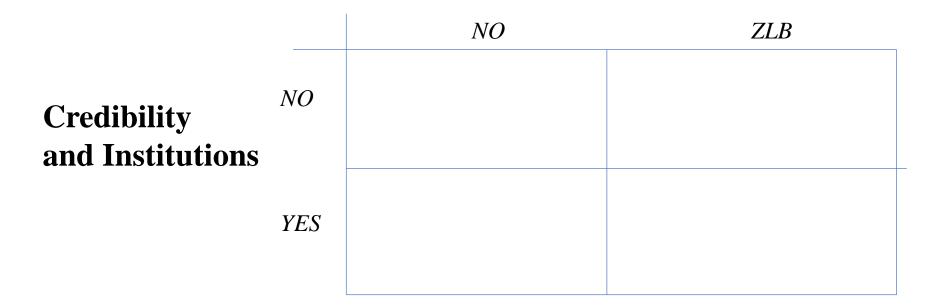
A new credibility problem: how to raise expected inflation if i = 0

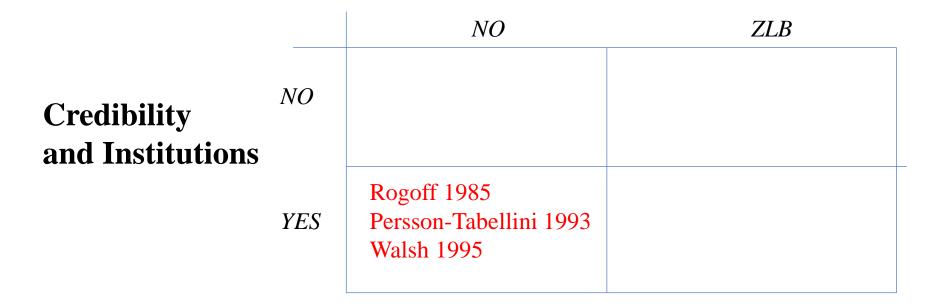
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A dual credibility problem

Monetary policy faces two opposite credibility problems:

- How to keep expected inflation low, in the presence of inflationary shocks
- How to raise expected inflation when $i \rightarrow 0$


Should inflation targeting framework be adjusted, and how?


Focus on incentive problems and institution design

 Institutions => central bank incentives => policy credibility => influence on expected inflation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Novelty: two credibility problems, not just one

		NO	ZLB
Credibility and Institutions	NO	Taylor 1993 Svensson 1997 Woodford 2005	
	YES	Rogoff 1985 Persson-Tabellini 1993 Walsh 1995	

		NO	ZLB
Credibility and Institutions	NO	Taylor 1993 Svensson 1997 Woodford 2005	Krugman 1997 Eggertson-Woodford 2003 Eggertson Giannoni 2013
	YES	Rogoff 1985 Persson-Tabellini 1993 Walsh 1995	

		NO	ZLB
Credibility and Institutions	NO	Taylor 1993 Svensson 1997 Woodford 2005	Krugman 1997 Eggertson-Woodford 2003 Eggertson Giannoni 2013
	YES	Rogoff 1985 Persson-Tabellini 1993 Walsh 1995	This paper

A simple model

Supply:

$$x^{s} = \theta + (\pi - \pi^{e}) - \varepsilon$$

x= output, π , $\pi^e=$ actual and expected inflation,

- heta= "natural" level of output, arepsilon= supply shocks
 - θ, ε random with mean $\overline{\theta}, 0$ respectively

Demand (IS - like curve):

$$x^d = \theta - \sigma(i - \pi^e - \rho)$$

i= interest rate, ho= real natural rate of interest, $\sigma>$ 0

▶ ho = R > 0 with prob 1 - q > 0, ho = r < 0 with prob q > 0

Expected inflation: π^e = E(π|θ) => role of monetary policy in stabilizing demand (ρ) and supply (ε) shocks.

Stationary stochastic environment => static model \bigcirc

Model ctd.

Assume that, irrespective of shocks θ, ε

- ZLB never binds if $\rho = R$, always binds if $\rho = r$
 - $q = \Pr(\rho = r) = \text{probability of ZLB}$
- i is the only policy instrument => monetary policy can only be used if ρ = R
 - Assumption can be relaxed
- Through π^e , policy in state *R* influences outcomes at ZLB
- Society's loss function (reflected in CB mandate):

$$E[L(\pi, x)] = \frac{1}{2}E[(\pi - \overline{\pi})^2 + \lambda(x - \overline{x})^2]$$

 $\overline{\pi}, \overline{x} =$ desired levels of inflation and output, $\lambda > 0$

Equilibrium under commitment

- CB chooses optimal (state contingent) policy rule, taking into account effect on π^e.
 - π^e relevant on supply side in both states ho = R, r
 - π^e relevant on demand side only if ho = r
- If q > 0, equilibrium has:
 - 1. $E(\pi^{C,R}) > \bar{\pi}$ and $\pi^{Ce} > \bar{\pi}$
 - As π^{C,R} ↑, so does π^e, which raises demand at the ZLB cf. Eggertson- Woodford 2003, Krugman 1997
 - 2. $E(\pi^{C,R})$, $\pi^{Ce} \uparrow$ if ZLB more likely $(q \uparrow)$ or more severe $(r \downarrow)$
 - 3. Partial stabilization of supply shocks ε

Equilibrium under discretion

CB minimizes $L(\pi, x)$, given observed realization of shocks, and taking π^e as given

Two offsetting distortions, as CB neglects

- ▶ effect of π^e on *supply* in both states $\rho = R, r =>$ inflation bias $\lambda(\bar{x} \theta)$
- benefit of ↑ π^e on demand in state r => deflation bias, larger if ZLB more likely (q ↑) or more severe (r ↓)
- ▶ Which one prevails? Ambiguous: $\pi^{D,R} \ge \pi^{C,R}$, $\pi^{De} \ge \pi^{Ce}$
 - But < more likely if ZLB more likely $(q \uparrow)$ or more severe $(r \downarrow)$
- Output more volatile under discretion
 - Stabilization of supply shock ε undistorted, but demand shock ρ neglected under discretion

Optimal (unrestricted) inflation contract

- CB under discretion is given performance contract T(π)
 => CB minimizes L(π, x) + T(π)
 - ► CB mandate (& public opinion) induce CB to internalize social welfare, L(π, x)
 - Institution design adds other incentives through $T(\pi)$
- Optimal unrestricted contract:

$$T(\pi^R) = au_0 + au_1(heta)\pi^R$$
, with $au_1(heta) \gtrless 0$

Implications

- Contract defined only on π^R nothing can be done at ZLB
- Linear inflation tax (τ₁ > 0) or subsidy (τ₁ < 0) contingent on incentive to inflate, θ
 - Subsidy more likely if ZLB more relevant $(q \uparrow, r \downarrow)$
 - Implements equilibrium under commitment
 - ► But needs to be contingent on realized CB incentives, θ

Inflation targeting as optimal inflation contract

What if contingency on θ not feasible? Then optimal contract:

$$T(\pi^R) = \tau_0 + \tau_1(\bar{\theta})\pi^R + \frac{\tau_2}{2}(\pi^R - \bar{\pi}^R)^2$$

Resembles inflation targeting framework, with following features

- CB accountable for inflation performance only in state R
- Inflation target $\bar{\pi}^R = E(\pi^{C,R}) > \bar{\pi}$
- Asymmetric penalties in either direction: $au_1(ar{ heta})\gtrless 0$
 - ▶ More tolerant of π^R ($au_1 < 0$) if ZLB more relevant ($q \uparrow, r \downarrow$)
- Penalty $\tau_2 > 0$ increases with $Var(\theta)$, decreases with $Var(\varepsilon)$
 - Does not implement equilibrium with commitment

Discussion: What target for inflation?

1. A higher target: $\bar{\pi}^R > \bar{\pi}$. How much higher? Suppose $\sigma = 1$, $\lambda = 0.25\%$, $\bar{\pi} = 2\%$.

• If
$$q = 0.25$$
 and $r = -3\%$, then $\bar{\pi}^R \simeq 2.5\%$

- If q > 0.4 or r < -3.3%, then π
 ^R ≃ 3%
 Caveat: if richer stochastic structure, ZLB more likely => π
 ^R↑
- 2. A state-dependent inflation target: only if out of ZLB
 - ▶ At ZLB, CB has no tools (or more costly) to control demand.

- This should be reflected in how it is held accountable cf. Kiley & Roberts (2017).
- 3. Symmetric tolerance for upward vs downward deviations
 - CB incentives could be distorted in either direction

Discussion: Dynamics

- \blacktriangleright If ρ serially correlated, then dynamics also matter.
 - Optimal policy should raises π_{t+1}^e when at the ZLB
- Price level targeting? (Eggertson & Woodford 2003)
 - Risk of additional output volatility after inflationary shocks
 - Price level as optimal shock absorber, in the face of supply, fiscal or financial shocks
- Average inflation targeting? (cf. Fed after August 2020)
 - Less transparent
 Was Fed "behind the curve" or was it targeting average inflation?
 Risk of Procyclicality

Benefit from a simple framework, easy to communicate.

Discussion: How to delegate

Inflation targeting matters if it changes CB incentives (actual and perceived)

- Inflation targeting differs from generic mandate
 - precise measure of performance
 - accountability procedure
 - decision making procedure and communication strategy of CB aligned with targeting framework
- Who should design the targeting framework?
 - Principal vs CB vs contractual agreement
- Accountability procedure and periodic evaluations
 - Keep π^R close to target on average over some predefined period (eg. 3 years) - not year by year
 - Explain deviations in terms of other objectives in CB mandate

Discussion: QE and financial stability

- QE is an additional policy instrument at the ZLB
 - Optimal inflation contract not significantly different
- QE could impose future social costs, but it could also prevent financial crisis - cf. Allen et al.
 - > Financial fragilities due to excessive liquidity vs liquidity crisis

- Are these tradeoffs fully internalized by CB?
- ► Integrate dual CB mandate (on x and π) with explicit delegation and responsibility for financial stability
- New challenges
 - Wide range of policy instruments
 - How to operationalize macro-prudential policies
 - How to hold CB accountable for them

Summary

Should IT framework be adjusted to cope with challenges of ZLB? Perspective of optimal institution design

- A higher inflation target (3%?)
- Applicable only if out of ZLB
- Symmetric tolerance around the target

Two aspects deserve more attention, in theory & practice of IT:

- Integrate IT with explicit responsibility for financial stability
- Procedure for accountability
 - Attention to group decisions and intrinsic motives

Decline in the real natural rate of interest

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで